Python data visualization cookbook: over 60 recipes that will enable you to learn how to create attractive visualizations using Python's most popular libraries
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK
Packt Publishing
2013
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 |
Beschreibung: | Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Preparing Your Working Environment; Introduction; Installing matplotlib, NumPy, and SciPy; Installing virtualenv and virtualenvwrapper; Installing matplotlib on Mac OS X; Installing matplotlib on Windows; Installing Python Imaging Library (PIL) for image processing; Installing a requests module; Customizing matplotlib's parameters in code; Customizing matplotlib's parameters per project; Chapter 2: Knowing Your Data; Introduction; Importing data from CSV. Importing data from Microsoft Excel filesImporting data from fixed-width data files; Importing data from tab-delimited files; Importing data from a JSON resource; Exporting data to JSON, CSV, and Excel; Importing data from a database; Cleaning up data from outliers; Reading files in chunks; Reading streaming data sources; Importing image data into NumPy arrays; Generating controlled random datasets; Smoothing the noise in real-world data; Chapter 3: Drawing Your First Plots and Customizing Them; Introduction; Defining plot types -- bar, line, and stacked charts Drawing simple sine and cosine plotDefining axis lengths and limits; Defining plot line styles, properties, and format strings; Setting ticks, labels, and grids; Adding legend and annotations; Moving spines to the center; Making histograms; Making bar charts with error bars; Making pie charts count; Plotting with filled areas; Drawing scatter plots with colored markers; Chapter 4: More Plots and Customizations; Introduction; Setting the transparency and size of axis labels; Adding a shadow to the chart line; Adding a data table to the figure; Using subplots; Customizing grids Creating contour plotsFilling an under-plot area; Drawing polar plots; Visualizing the file system tree using a polar bar; Chapter 5: Making 3D Visualizations; Introduction; Creating 3D bars; Creating 3D histograms; Animating in matplotlib; Animating with OpenGL; Chapter 6: Plotting Charts with Images and Maps; Introduction; Processing images with PIL; Plotting with images; Displaying image with other plots in the figure; Plotting data on a map using Basemap; Plotting data on a map using Google Map API; Generating CAPTCHA images; Chapter 7: Using Right Plots to Understand Data; Introduction Understanding logarithmic plotsUnderstanding spectrograms; Creating a stem plot; Drawing streamlines of vector flow; Using colormaps; Using scatter plots and histograms; Plotting the cross-correlation between two variables; Importance of autocorrelation; Chapter 8: More on Matplotlib Gems; Introduction; Drawing barbs; Making a box and whisker plot; Making Gantt charts; Making errorbars; Making use of text and font properties; Rendering text with LaTeX; Understanding the difference between pyplot and OO API; Index This book is written in a Cookbook style targeted towards an advanced audience. It covers the advanced topics of data visualization in Python. Python Data Visualization Cookbook is for developers that already know about Python programming in general. If you have heard about data visualization but you don't know where to start, then this book will guide you from the start and help you understand data, data formats, data visualization, and how to use Python to visualize data. You will need to know some general programming concepts, and any kind of programming experience will be helpful, but the co |
ISBN: | 9781782163374 1782163379 1306166101 9781306166102 1782163360 9781782163367 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043777427 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160920s2013 |||| o||u| ||||||eng d | ||
020 | |a 9781782163374 |9 978-1-78216-337-4 | ||
020 | |a 1782163379 |9 1-78216-337-9 | ||
020 | |a 1306166101 |9 1-306-16610-1 | ||
020 | |a 9781306166102 |9 978-1-306-16610-2 | ||
020 | |a 1782163360 |9 1-78216-336-0 | ||
020 | |a 9781782163367 |9 978-1-78216-336-7 | ||
020 | |a 9781782163367 |9 978-1-78216-336-7 | ||
020 | |z 9781781263367 |9 9781781263367 | ||
035 | |a (ZDB-4-EBA)ocn864381760 | ||
035 | |a (ZDB-4-ITC)ocn864381760 | ||
035 | |a (OCoLC)864381760 | ||
035 | |a (DE-599)BVBBV043777427 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 005.13/3 |2 23 | |
100 | 1 | |a Milovanović, Igor |e Verfasser |4 aut | |
245 | 1 | 0 | |a Python data visualization cookbook |b over 60 recipes that will enable you to learn how to create attractive visualizations using Python's most popular libraries |c Igor Milovanović |
264 | 1 | |a Birmingham, UK |b Packt Publishing |c 2013 | |
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Preparing Your Working Environment; Introduction; Installing matplotlib, NumPy, and SciPy; Installing virtualenv and virtualenvwrapper; Installing matplotlib on Mac OS X; Installing matplotlib on Windows; Installing Python Imaging Library (PIL) for image processing; Installing a requests module; Customizing matplotlib's parameters in code; Customizing matplotlib's parameters per project; Chapter 2: Knowing Your Data; Introduction; Importing data from CSV. | ||
500 | |a Importing data from Microsoft Excel filesImporting data from fixed-width data files; Importing data from tab-delimited files; Importing data from a JSON resource; Exporting data to JSON, CSV, and Excel; Importing data from a database; Cleaning up data from outliers; Reading files in chunks; Reading streaming data sources; Importing image data into NumPy arrays; Generating controlled random datasets; Smoothing the noise in real-world data; Chapter 3: Drawing Your First Plots and Customizing Them; Introduction; Defining plot types -- bar, line, and stacked charts | ||
500 | |a Drawing simple sine and cosine plotDefining axis lengths and limits; Defining plot line styles, properties, and format strings; Setting ticks, labels, and grids; Adding legend and annotations; Moving spines to the center; Making histograms; Making bar charts with error bars; Making pie charts count; Plotting with filled areas; Drawing scatter plots with colored markers; Chapter 4: More Plots and Customizations; Introduction; Setting the transparency and size of axis labels; Adding a shadow to the chart line; Adding a data table to the figure; Using subplots; Customizing grids | ||
500 | |a Creating contour plotsFilling an under-plot area; Drawing polar plots; Visualizing the file system tree using a polar bar; Chapter 5: Making 3D Visualizations; Introduction; Creating 3D bars; Creating 3D histograms; Animating in matplotlib; Animating with OpenGL; Chapter 6: Plotting Charts with Images and Maps; Introduction; Processing images with PIL; Plotting with images; Displaying image with other plots in the figure; Plotting data on a map using Basemap; Plotting data on a map using Google Map API; Generating CAPTCHA images; Chapter 7: Using Right Plots to Understand Data; Introduction | ||
500 | |a Understanding logarithmic plotsUnderstanding spectrograms; Creating a stem plot; Drawing streamlines of vector flow; Using colormaps; Using scatter plots and histograms; Plotting the cross-correlation between two variables; Importance of autocorrelation; Chapter 8: More on Matplotlib Gems; Introduction; Drawing barbs; Making a box and whisker plot; Making Gantt charts; Making errorbars; Making use of text and font properties; Rendering text with LaTeX; Understanding the difference between pyplot and OO API; Index | ||
500 | |a This book is written in a Cookbook style targeted towards an advanced audience. It covers the advanced topics of data visualization in Python. Python Data Visualization Cookbook is for developers that already know about Python programming in general. If you have heard about data visualization but you don't know where to start, then this book will guide you from the start and help you understand data, data formats, data visualization, and how to use Python to visualize data. You will need to know some general programming concepts, and any kind of programming experience will be helpful, but the co | ||
650 | 4 | |a Information visualization | |
650 | 4 | |a Python (Computer program language) | |
650 | 7 | |a COMPUTERS / Programming Languages / Python |2 bisacsh | |
650 | 7 | |a Python (Computer program language) |2 fast | |
650 | 4 | |a Python (Computer program language) | |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sprachverarbeitung |0 (DE-588)4116579-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | 1 | |a Sprachverarbeitung |0 (DE-588)4116579-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
912 | |a ZDB-4-EBA |a ZDB-4-ITC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029188487 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=673015 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=673015 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176605015179264 |
---|---|
any_adam_object | |
author | Milovanović, Igor |
author_facet | Milovanović, Igor |
author_role | aut |
author_sort | Milovanović, Igor |
author_variant | i m im |
building | Verbundindex |
bvnumber | BV043777427 |
collection | ZDB-4-EBA ZDB-4-ITC |
ctrlnum | (ZDB-4-EBA)ocn864381760 (ZDB-4-ITC)ocn864381760 (OCoLC)864381760 (DE-599)BVBBV043777427 |
dewey-full | 005.13/3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.13/3 |
dewey-search | 005.13/3 |
dewey-sort | 15.13 13 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05796nmm a2200601zc 4500</leader><controlfield tag="001">BV043777427</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160920s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781782163374</subfield><subfield code="9">978-1-78216-337-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1782163379</subfield><subfield code="9">1-78216-337-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1306166101</subfield><subfield code="9">1-306-16610-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781306166102</subfield><subfield code="9">978-1-306-16610-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1782163360</subfield><subfield code="9">1-78216-336-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781782163367</subfield><subfield code="9">978-1-78216-336-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781782163367</subfield><subfield code="9">978-1-78216-336-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781781263367</subfield><subfield code="9">9781781263367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn864381760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ITC)ocn864381760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864381760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043777427</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.13/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Milovanović, Igor</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Python data visualization cookbook</subfield><subfield code="b">over 60 recipes that will enable you to learn how to create attractive visualizations using Python's most popular libraries</subfield><subfield code="c">Igor Milovanović</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Preparing Your Working Environment; Introduction; Installing matplotlib, NumPy, and SciPy; Installing virtualenv and virtualenvwrapper; Installing matplotlib on Mac OS X; Installing matplotlib on Windows; Installing Python Imaging Library (PIL) for image processing; Installing a requests module; Customizing matplotlib's parameters in code; Customizing matplotlib's parameters per project; Chapter 2: Knowing Your Data; Introduction; Importing data from CSV.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Importing data from Microsoft Excel filesImporting data from fixed-width data files; Importing data from tab-delimited files; Importing data from a JSON resource; Exporting data to JSON, CSV, and Excel; Importing data from a database; Cleaning up data from outliers; Reading files in chunks; Reading streaming data sources; Importing image data into NumPy arrays; Generating controlled random datasets; Smoothing the noise in real-world data; Chapter 3: Drawing Your First Plots and Customizing Them; Introduction; Defining plot types -- bar, line, and stacked charts</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Drawing simple sine and cosine plotDefining axis lengths and limits; Defining plot line styles, properties, and format strings; Setting ticks, labels, and grids; Adding legend and annotations; Moving spines to the center; Making histograms; Making bar charts with error bars; Making pie charts count; Plotting with filled areas; Drawing scatter plots with colored markers; Chapter 4: More Plots and Customizations; Introduction; Setting the transparency and size of axis labels; Adding a shadow to the chart line; Adding a data table to the figure; Using subplots; Customizing grids</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Creating contour plotsFilling an under-plot area; Drawing polar plots; Visualizing the file system tree using a polar bar; Chapter 5: Making 3D Visualizations; Introduction; Creating 3D bars; Creating 3D histograms; Animating in matplotlib; Animating with OpenGL; Chapter 6: Plotting Charts with Images and Maps; Introduction; Processing images with PIL; Plotting with images; Displaying image with other plots in the figure; Plotting data on a map using Basemap; Plotting data on a map using Google Map API; Generating CAPTCHA images; Chapter 7: Using Right Plots to Understand Data; Introduction</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Understanding logarithmic plotsUnderstanding spectrograms; Creating a stem plot; Drawing streamlines of vector flow; Using colormaps; Using scatter plots and histograms; Plotting the cross-correlation between two variables; Importance of autocorrelation; Chapter 8: More on Matplotlib Gems; Introduction; Drawing barbs; Making a box and whisker plot; Making Gantt charts; Making errorbars; Making use of text and font properties; Rendering text with LaTeX; Understanding the difference between pyplot and OO API; Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is written in a Cookbook style targeted towards an advanced audience. It covers the advanced topics of data visualization in Python. Python Data Visualization Cookbook is for developers that already know about Python programming in general. If you have heard about data visualization but you don't know where to start, then this book will guide you from the start and help you understand data, data formats, data visualization, and how to use Python to visualize data. You will need to know some general programming concepts, and any kind of programming experience will be helpful, but the co</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information visualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Programming Languages / Python</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sprachverarbeitung</subfield><subfield code="0">(DE-588)4116579-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Sprachverarbeitung</subfield><subfield code="0">(DE-588)4116579-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield><subfield code="a">ZDB-4-ITC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029188487</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=673015</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=673015</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043777427 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:34:50Z |
institution | BVB |
isbn | 9781782163374 1782163379 1306166101 9781306166102 1782163360 9781782163367 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029188487 |
oclc_num | 864381760 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
psigel | ZDB-4-EBA ZDB-4-ITC ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Packt Publishing |
record_format | marc |
spelling | Milovanović, Igor Verfasser aut Python data visualization cookbook over 60 recipes that will enable you to learn how to create attractive visualizations using Python's most popular libraries Igor Milovanović Birmingham, UK Packt Publishing 2013 txt rdacontent c rdamedia cr rdacarrier Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Preparing Your Working Environment; Introduction; Installing matplotlib, NumPy, and SciPy; Installing virtualenv and virtualenvwrapper; Installing matplotlib on Mac OS X; Installing matplotlib on Windows; Installing Python Imaging Library (PIL) for image processing; Installing a requests module; Customizing matplotlib's parameters in code; Customizing matplotlib's parameters per project; Chapter 2: Knowing Your Data; Introduction; Importing data from CSV. Importing data from Microsoft Excel filesImporting data from fixed-width data files; Importing data from tab-delimited files; Importing data from a JSON resource; Exporting data to JSON, CSV, and Excel; Importing data from a database; Cleaning up data from outliers; Reading files in chunks; Reading streaming data sources; Importing image data into NumPy arrays; Generating controlled random datasets; Smoothing the noise in real-world data; Chapter 3: Drawing Your First Plots and Customizing Them; Introduction; Defining plot types -- bar, line, and stacked charts Drawing simple sine and cosine plotDefining axis lengths and limits; Defining plot line styles, properties, and format strings; Setting ticks, labels, and grids; Adding legend and annotations; Moving spines to the center; Making histograms; Making bar charts with error bars; Making pie charts count; Plotting with filled areas; Drawing scatter plots with colored markers; Chapter 4: More Plots and Customizations; Introduction; Setting the transparency and size of axis labels; Adding a shadow to the chart line; Adding a data table to the figure; Using subplots; Customizing grids Creating contour plotsFilling an under-plot area; Drawing polar plots; Visualizing the file system tree using a polar bar; Chapter 5: Making 3D Visualizations; Introduction; Creating 3D bars; Creating 3D histograms; Animating in matplotlib; Animating with OpenGL; Chapter 6: Plotting Charts with Images and Maps; Introduction; Processing images with PIL; Plotting with images; Displaying image with other plots in the figure; Plotting data on a map using Basemap; Plotting data on a map using Google Map API; Generating CAPTCHA images; Chapter 7: Using Right Plots to Understand Data; Introduction Understanding logarithmic plotsUnderstanding spectrograms; Creating a stem plot; Drawing streamlines of vector flow; Using colormaps; Using scatter plots and histograms; Plotting the cross-correlation between two variables; Importance of autocorrelation; Chapter 8: More on Matplotlib Gems; Introduction; Drawing barbs; Making a box and whisker plot; Making Gantt charts; Making errorbars; Making use of text and font properties; Rendering text with LaTeX; Understanding the difference between pyplot and OO API; Index This book is written in a Cookbook style targeted towards an advanced audience. It covers the advanced topics of data visualization in Python. Python Data Visualization Cookbook is for developers that already know about Python programming in general. If you have heard about data visualization but you don't know where to start, then this book will guide you from the start and help you understand data, data formats, data visualization, and how to use Python to visualize data. You will need to know some general programming concepts, and any kind of programming experience will be helpful, but the co Information visualization Python (Computer program language) COMPUTERS / Programming Languages / Python bisacsh Python (Computer program language) fast Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf Sprachverarbeitung (DE-588)4116579-2 gnd rswk-swf Python Programmiersprache (DE-588)4434275-5 s Sprachverarbeitung (DE-588)4116579-2 s 1\p DE-604 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Milovanović, Igor Python data visualization cookbook over 60 recipes that will enable you to learn how to create attractive visualizations using Python's most popular libraries Information visualization Python (Computer program language) COMPUTERS / Programming Languages / Python bisacsh Python (Computer program language) fast Python Programmiersprache (DE-588)4434275-5 gnd Sprachverarbeitung (DE-588)4116579-2 gnd |
subject_GND | (DE-588)4434275-5 (DE-588)4116579-2 |
title | Python data visualization cookbook over 60 recipes that will enable you to learn how to create attractive visualizations using Python's most popular libraries |
title_auth | Python data visualization cookbook over 60 recipes that will enable you to learn how to create attractive visualizations using Python's most popular libraries |
title_exact_search | Python data visualization cookbook over 60 recipes that will enable you to learn how to create attractive visualizations using Python's most popular libraries |
title_full | Python data visualization cookbook over 60 recipes that will enable you to learn how to create attractive visualizations using Python's most popular libraries Igor Milovanović |
title_fullStr | Python data visualization cookbook over 60 recipes that will enable you to learn how to create attractive visualizations using Python's most popular libraries Igor Milovanović |
title_full_unstemmed | Python data visualization cookbook over 60 recipes that will enable you to learn how to create attractive visualizations using Python's most popular libraries Igor Milovanović |
title_short | Python data visualization cookbook |
title_sort | python data visualization cookbook over 60 recipes that will enable you to learn how to create attractive visualizations using python s most popular libraries |
title_sub | over 60 recipes that will enable you to learn how to create attractive visualizations using Python's most popular libraries |
topic | Information visualization Python (Computer program language) COMPUTERS / Programming Languages / Python bisacsh Python (Computer program language) fast Python Programmiersprache (DE-588)4434275-5 gnd Sprachverarbeitung (DE-588)4116579-2 gnd |
topic_facet | Information visualization Python (Computer program language) COMPUTERS / Programming Languages / Python Python Programmiersprache Sprachverarbeitung |
work_keys_str_mv | AT milovanovicigor pythondatavisualizationcookbookover60recipesthatwillenableyoutolearnhowtocreateattractivevisualizationsusingpythonsmostpopularlibraries |