Knots and physics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
©2013
|
Ausgabe: | 4th ed |
Schriftenreihe: | K & E series on knots and everything
. 53 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 |
Beschreibung: | Includes bibliographical references and index pt. I.A short course of knots and physics. 1. Physical knots. 2. Diagrams and moves. 3. States and the bracket polynomial. 4. Alternating links and checkerboard surfaces. 5. The Jones polynomial and its generalizations. 6. An oriented state model for VK(t). 7.braids and the Jones polynomial. 8. Abstract tensors and the Yang-Baxter equation. 9. Formal Feynman diagrams, bracket as a vacuum-vacuum expectation and the quantum group SL(2)q. 10. The form of the universal R-matrix. 11. Yang-Baxter models for specializations of the Homfly polynomial. 12. The Alexander polynomial. 13. Knot-crystals -- classical knot theory in a modern guise. 14. The Kauffman polynomial. 15. Oriented models and piecewise linear models. 16. Three manifold invariants from the Jones polynomial. 17. Integral heuristics and Witten's invariants. 18. Appendix -- solutions to the Yang-Baxter equation -- pt. II. Knots and physics -- miscellany. 1. Theory of hitches. 2. The rubber band and twisted tube. 3. On a crossing. 4. Slide equivalence. 5. Unoriented diagrams and linking numbers. 6. The Penrose chromatic recursion. 7. The chromatic polynomial. 8. The Potts model and the dichromatic polynomial. 9. Preliminaries for quantum mechanics, spin networks and angular momentum. 10. Quaternions, Cayley numbers and the belt trick. 11. The quaternion demonstrator. 12. The Penrose theory of spin networks. 13. Q-spin networks and the magic wave. 14. Knots and strings -- knotted strings. 15. DNA and quantum field theory. 16. Knots in dynamical systems -- the Leronz attractor This invaluable book is an introduction to knot and link invariants as generalized amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This stance has the advantage of providing direct access to the algebra and to the combinatorial topology, as well as physical ideas. The book is divided into two parts: Part I is a systematic course on knots and physics starting from the ground up, and Part II is a set of lectures on various topics related to Part I. Part II includes topics such as frictional properties of knots, relations with combinatorics, and knots in dynamical systems. In this new edition, articles on other topics, including Khovanov Homology, have been included |
Beschreibung: | xviii, 846 pages |
ISBN: | 9789814383028 9814383023 9789814383004 9789814383011 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043776003 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160920s2013 |||| o||u| ||||||eng d | ||
020 | |a 9789814383028 |9 978-981-4383-02-8 | ||
020 | |a 9814383023 |9 981-4383-02-3 | ||
020 | |a 9789814383004 |9 978-981-4383-00-4 | ||
020 | |a 9789814383011 |9 978-981-4383-01-1 | ||
035 | |a (ZDB-4-EBA)ocn840254732 | ||
035 | |a (OCoLC)840254732 | ||
035 | |a (DE-599)BVBBV043776003 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.1542242 |2 22 | |
100 | 1 | |a Kauffman, Louis H. |d 1945- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Knots and physics |c Louis H. Kauffman |
250 | |a 4th ed | ||
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c ©2013 | |
300 | |a xviii, 846 pages | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a K & E series on knots and everything |v . 53 | |
500 | |a Includes bibliographical references and index | ||
500 | |a pt. I.A short course of knots and physics. 1. Physical knots. 2. Diagrams and moves. 3. States and the bracket polynomial. 4. Alternating links and checkerboard surfaces. 5. The Jones polynomial and its generalizations. 6. An oriented state model for VK(t). 7.braids and the Jones polynomial. 8. Abstract tensors and the Yang-Baxter equation. 9. Formal Feynman diagrams, bracket as a vacuum-vacuum expectation and the quantum group SL(2)q. 10. The form of the universal R-matrix. 11. Yang-Baxter models for specializations of the Homfly polynomial. 12. The Alexander polynomial. 13. Knot-crystals -- classical knot theory in a modern guise. 14. The Kauffman polynomial. 15. Oriented models and piecewise linear models. 16. Three manifold invariants from the Jones polynomial. 17. Integral heuristics and Witten's invariants. 18. Appendix -- solutions to the Yang-Baxter equation -- pt. II. Knots and physics -- miscellany. 1. Theory of hitches. 2. The rubber band and twisted tube. 3. On a crossing. 4. Slide equivalence. 5. Unoriented diagrams and linking numbers. 6. The Penrose chromatic recursion. 7. The chromatic polynomial. 8. The Potts model and the dichromatic polynomial. 9. Preliminaries for quantum mechanics, spin networks and angular momentum. 10. Quaternions, Cayley numbers and the belt trick. 11. The quaternion demonstrator. 12. The Penrose theory of spin networks. 13. Q-spin networks and the magic wave. 14. Knots and strings -- knotted strings. 15. DNA and quantum field theory. 16. Knots in dynamical systems -- the Leronz attractor | ||
500 | |a This invaluable book is an introduction to knot and link invariants as generalized amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This stance has the advantage of providing direct access to the algebra and to the combinatorial topology, as well as physical ideas. The book is divided into two parts: Part I is a systematic course on knots and physics starting from the ground up, and Part II is a set of lectures on various topics related to Part I. Part II includes topics such as frictional properties of knots, relations with combinatorics, and knots in dynamical systems. In this new edition, articles on other topics, including Khovanov Homology, have been included | ||
650 | 4 | |a Knot theory / Congresses | |
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 7 | |a Knot polynomials |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Knot polynomials | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Knoten |g Mathematik |0 (DE-588)4164314-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Knotentheorie |0 (DE-588)4164318-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Knoten |g Mathematik |0 (DE-588)4164314-8 |D s |
689 | 0 | 1 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Knotentheorie |0 (DE-588)4164318-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
710 | 2 | |a World Scientific (Firm) |e Sonstige |4 oth | |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029187063 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=533873 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=533873 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176602256375808 |
---|---|
any_adam_object | |
author | Kauffman, Louis H. 1945- |
author_facet | Kauffman, Louis H. 1945- |
author_role | aut |
author_sort | Kauffman, Louis H. 1945- |
author_variant | l h k lh lhk |
building | Verbundindex |
bvnumber | BV043776003 |
collection | ZDB-4-EBA |
ctrlnum | (ZDB-4-EBA)ocn840254732 (OCoLC)840254732 (DE-599)BVBBV043776003 |
dewey-full | 530.1542242 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1542242 |
dewey-search | 530.1542242 |
dewey-sort | 3530.1542242 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 4th ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04962nmm a2200637zcb4500</leader><controlfield tag="001">BV043776003</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160920s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814383028</subfield><subfield code="9">978-981-4383-02-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814383023</subfield><subfield code="9">981-4383-02-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814383004</subfield><subfield code="9">978-981-4383-00-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814383011</subfield><subfield code="9">978-981-4383-01-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn840254732</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)840254732</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043776003</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1542242</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kauffman, Louis H.</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Knots and physics</subfield><subfield code="c">Louis H. Kauffman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4th ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">©2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 846 pages</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">K & E series on knots and everything</subfield><subfield code="v">. 53</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">pt. I.A short course of knots and physics. 1. Physical knots. 2. Diagrams and moves. 3. States and the bracket polynomial. 4. Alternating links and checkerboard surfaces. 5. The Jones polynomial and its generalizations. 6. An oriented state model for VK(t). 7.braids and the Jones polynomial. 8. Abstract tensors and the Yang-Baxter equation. 9. Formal Feynman diagrams, bracket as a vacuum-vacuum expectation and the quantum group SL(2)q. 10. The form of the universal R-matrix. 11. Yang-Baxter models for specializations of the Homfly polynomial. 12. The Alexander polynomial. 13. Knot-crystals -- classical knot theory in a modern guise. 14. The Kauffman polynomial. 15. Oriented models and piecewise linear models. 16. Three manifold invariants from the Jones polynomial. 17. Integral heuristics and Witten's invariants. 18. Appendix -- solutions to the Yang-Baxter equation -- pt. II. Knots and physics -- miscellany. 1. Theory of hitches. 2. The rubber band and twisted tube. 3. On a crossing. 4. Slide equivalence. 5. Unoriented diagrams and linking numbers. 6. The Penrose chromatic recursion. 7. The chromatic polynomial. 8. The Potts model and the dichromatic polynomial. 9. Preliminaries for quantum mechanics, spin networks and angular momentum. 10. Quaternions, Cayley numbers and the belt trick. 11. The quaternion demonstrator. 12. The Penrose theory of spin networks. 13. Q-spin networks and the magic wave. 14. Knots and strings -- knotted strings. 15. DNA and quantum field theory. 16. Knots in dynamical systems -- the Leronz attractor</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This invaluable book is an introduction to knot and link invariants as generalized amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This stance has the advantage of providing direct access to the algebra and to the combinatorial topology, as well as physical ideas. The book is divided into two parts: Part I is a systematic course on knots and physics starting from the ground up, and Part II is a set of lectures on various topics related to Part I. Part II includes topics such as frictional properties of knots, relations with combinatorics, and knots in dynamical systems. In this new edition, articles on other topics, including Khovanov Homology, have been included</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knot theory / Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Knot polynomials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knot polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knoten</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4164314-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knotentheorie</subfield><subfield code="0">(DE-588)4164318-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Knoten</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4164314-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Knotentheorie</subfield><subfield code="0">(DE-588)4164318-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029187063</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=533873</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=533873</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV043776003 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:34:47Z |
institution | BVB |
isbn | 9789814383028 9814383023 9789814383004 9789814383011 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029187063 |
oclc_num | 840254732 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | xviii, 846 pages |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | K & E series on knots and everything |
spelling | Kauffman, Louis H. 1945- Verfasser aut Knots and physics Louis H. Kauffman 4th ed Singapore World Scientific Pub. Co. ©2013 xviii, 846 pages txt rdacontent c rdamedia cr rdacarrier K & E series on knots and everything . 53 Includes bibliographical references and index pt. I.A short course of knots and physics. 1. Physical knots. 2. Diagrams and moves. 3. States and the bracket polynomial. 4. Alternating links and checkerboard surfaces. 5. The Jones polynomial and its generalizations. 6. An oriented state model for VK(t). 7.braids and the Jones polynomial. 8. Abstract tensors and the Yang-Baxter equation. 9. Formal Feynman diagrams, bracket as a vacuum-vacuum expectation and the quantum group SL(2)q. 10. The form of the universal R-matrix. 11. Yang-Baxter models for specializations of the Homfly polynomial. 12. The Alexander polynomial. 13. Knot-crystals -- classical knot theory in a modern guise. 14. The Kauffman polynomial. 15. Oriented models and piecewise linear models. 16. Three manifold invariants from the Jones polynomial. 17. Integral heuristics and Witten's invariants. 18. Appendix -- solutions to the Yang-Baxter equation -- pt. II. Knots and physics -- miscellany. 1. Theory of hitches. 2. The rubber band and twisted tube. 3. On a crossing. 4. Slide equivalence. 5. Unoriented diagrams and linking numbers. 6. The Penrose chromatic recursion. 7. The chromatic polynomial. 8. The Potts model and the dichromatic polynomial. 9. Preliminaries for quantum mechanics, spin networks and angular momentum. 10. Quaternions, Cayley numbers and the belt trick. 11. The quaternion demonstrator. 12. The Penrose theory of spin networks. 13. Q-spin networks and the magic wave. 14. Knots and strings -- knotted strings. 15. DNA and quantum field theory. 16. Knots in dynamical systems -- the Leronz attractor This invaluable book is an introduction to knot and link invariants as generalized amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This stance has the advantage of providing direct access to the algebra and to the combinatorial topology, as well as physical ideas. The book is divided into two parts: Part I is a systematic course on knots and physics starting from the ground up, and Part II is a set of lectures on various topics related to Part I. Part II includes topics such as frictional properties of knots, relations with combinatorics, and knots in dynamical systems. In this new edition, articles on other topics, including Khovanov Homology, have been included Knot theory / Congresses MATHEMATICS / Topology bisacsh Knot polynomials fast Mathematical physics fast Mathematische Physik Knot polynomials Mathematical physics Knoten Mathematik (DE-588)4164314-8 gnd rswk-swf Physik (DE-588)4045956-1 gnd rswk-swf Knotentheorie (DE-588)4164318-5 gnd rswk-swf (DE-588)1071861417 Konferenzschrift gnd-content Knoten Mathematik (DE-588)4164314-8 s Physik (DE-588)4045956-1 s 1\p DE-604 Knotentheorie (DE-588)4164318-5 s 2\p DE-604 World Scientific (Firm) Sonstige oth 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kauffman, Louis H. 1945- Knots and physics Knot theory / Congresses MATHEMATICS / Topology bisacsh Knot polynomials fast Mathematical physics fast Mathematische Physik Knot polynomials Mathematical physics Knoten Mathematik (DE-588)4164314-8 gnd Physik (DE-588)4045956-1 gnd Knotentheorie (DE-588)4164318-5 gnd |
subject_GND | (DE-588)4164314-8 (DE-588)4045956-1 (DE-588)4164318-5 (DE-588)1071861417 |
title | Knots and physics |
title_auth | Knots and physics |
title_exact_search | Knots and physics |
title_full | Knots and physics Louis H. Kauffman |
title_fullStr | Knots and physics Louis H. Kauffman |
title_full_unstemmed | Knots and physics Louis H. Kauffman |
title_short | Knots and physics |
title_sort | knots and physics |
topic | Knot theory / Congresses MATHEMATICS / Topology bisacsh Knot polynomials fast Mathematical physics fast Mathematische Physik Knot polynomials Mathematical physics Knoten Mathematik (DE-588)4164314-8 gnd Physik (DE-588)4045956-1 gnd Knotentheorie (DE-588)4164318-5 gnd |
topic_facet | Knot theory / Congresses MATHEMATICS / Topology Knot polynomials Mathematical physics Mathematische Physik Knoten Mathematik Physik Knotentheorie Konferenzschrift |
work_keys_str_mv | AT kauffmanlouish knotsandphysics AT worldscientificfirm knotsandphysics |