Methods of noncommutative analysis: theory and applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
Walter de Gruyter
1995
|
Schriftenreihe: | De Gruyter studies in mathematics
22 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 |
Beschreibung: | Includes bibliographical references and index ""Preface""; ""I Elementary Notions of Noncommutative Analysis""; ""1 Some Situations where Functions of Noncommuting Operators Arise""; ""1.1 Nonautonomous Linear Differential Equations of First Order. T-Exponentials""; ""1.2 Operators of Quantum Mechanics. Creation and Annihilation Operators""; ""1.3 Differential and Integral Operators""; ""1.4 Problems of Perturbation Theory""; ""1.5 Multiplication Law in Lie Groups""; ""1.6 Eigenfunctions and Eigenvalues of the Quantum Oscillator""; ""1.7 T-Exponentials, Trotter Formulas, and Path Integrals"" ""2 Functions of Noncommuting Operators: the Construction and Main Properties""""2.1 Motivations""; ""2.2 The Definition and the Uniqueness Theorem""; ""2.3 Basic Properties""; ""2.4 Tempered Symbols and Generators of Tempered Groups""; ""2.5 The Influence of the Symbol Classes on the Properties of Generators""; ""2.6 Weyl Quantization""; ""3 Noncommutative Differential Calculus""; ""3.1 The Derivation Formula""; ""3.2 The Daletskii-Krein Formula""; ""3.3 Higher-Order Expansions""; ""3.4 Permutation of Feynman Indices""; ""3.5 The Composite Function Formula"" ""4 The Campbell-Hausdorff Theorem and Dynkinâ€?s Formula""""4.1 Statement of the Problem""; ""4.2 The Commutation Operation""; ""4.3 A Closed Formula for In (eBeA)""; ""4.4 A Closed Formula for the Logarithm of a T-Exponential""; ""5 Summary: Rules of â€Operator Arithmeticâ€? and Some Standard Techniques""; ""5.1 Notation""; ""5.2 Rules""; ""5.3 Standard Techniques""; ""II Method of Ordered Representation""; ""1 Ordered Representation: Definition and Main Property""; ""1.1 Wick Normal Form""; ""1.2 Ordered Representation and Theorem on Products""; ""1.3 Reduction to Normal Form"" ""2 Some Examples""""2.1 Functions of the Operators x and â€? ihÓ?/dÓ?""; ""2.2 Perturbed Heisenberg Relations""; ""2.3 Examples of Nonlinear Commutation Relations""; ""2.4 Lie Commutation Relations""; ""2.5 Graded Lie Algebras""; ""3 Evaluation of the Ordered Representation Operators""; ""3.1 Equations for the Ordered Representation Operators""; ""3.2 How to Obtain the Solution""; ""3.3 Semilinear Commutation Relations""; ""4 The Jacobi Condition and Poincaré-Birkhoff-Witt Theorem""; ""4.1 Ordered Representation of Relation Systems and the Jacobi Condition"" ""4.2 The Poincaré-Birkhoff-Witt Theorem""""4.3 Verification of the Jacobi Condition: Two Examples""; ""5 The Ordered Representations, Jacobi Condition, and the Yang-Baxter Equation""; ""6 Representations of Lie Groups and Functions of Their Generators""; ""6.1 Conditions on the Representation""; ""6.2 Hilbert Scales""; ""6.3 Symbol Spaces""; ""6.4 Symbol Classes: More Suitable for Asymptotic Problems""; ""III Noncommutative Analysis and Differential Equations""; ""1 Preliminaries""; ""1.1 Heavisideâ€?s Operator Method for Differential Equations with Constant Coefficients"" |
Beschreibung: | x, 373 pages |
ISBN: | 9783110813548 3110813548 1306275261 9781306275262 3110146320 9783110146325 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043774209 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160920s1995 |||| o||u| ||||||eng d | ||
020 | |a 9783110813548 |9 978-3-11-081354-8 | ||
020 | |a 3110813548 |9 3-11-081354-8 | ||
020 | |a 1306275261 |9 1-306-27526-1 | ||
020 | |a 9781306275262 |9 978-1-306-27526-2 | ||
020 | |a 3110146320 |9 3-11-014632-0 | ||
020 | |a 9783110146325 |9 978-3-11-014632-5 | ||
035 | |a (ZDB-4-EBA)ocn811372212 | ||
035 | |a (OCoLC)811372212 | ||
035 | |a (DE-599)BVBBV043774209 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.72 |2 20 | |
100 | 1 | |a Nazaĭkinskiĭ, V. E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Methods of noncommutative analysis |b theory and applications |c Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin |
264 | 1 | |a Berlin |b Walter de Gruyter |c 1995 | |
300 | |a x, 373 pages | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter studies in mathematics |v 22 | |
500 | |a Includes bibliographical references and index | ||
500 | |a ""Preface""; ""I Elementary Notions of Noncommutative Analysis""; ""1 Some Situations where Functions of Noncommuting Operators Arise""; ""1.1 Nonautonomous Linear Differential Equations of First Order. T-Exponentials""; ""1.2 Operators of Quantum Mechanics. Creation and Annihilation Operators""; ""1.3 Differential and Integral Operators""; ""1.4 Problems of Perturbation Theory""; ""1.5 Multiplication Law in Lie Groups""; ""1.6 Eigenfunctions and Eigenvalues of the Quantum Oscillator""; ""1.7 T-Exponentials, Trotter Formulas, and Path Integrals"" | ||
500 | |a ""2 Functions of Noncommuting Operators: the Construction and Main Properties""""2.1 Motivations""; ""2.2 The Definition and the Uniqueness Theorem""; ""2.3 Basic Properties""; ""2.4 Tempered Symbols and Generators of Tempered Groups""; ""2.5 The Influence of the Symbol Classes on the Properties of Generators""; ""2.6 Weyl Quantization""; ""3 Noncommutative Differential Calculus""; ""3.1 The Derivation Formula""; ""3.2 The Daletskii-Krein Formula""; ""3.3 Higher-Order Expansions""; ""3.4 Permutation of Feynman Indices""; ""3.5 The Composite Function Formula"" | ||
500 | |a ""4 The Campbell-Hausdorff Theorem and Dynkinâ€?s Formula""""4.1 Statement of the Problem""; ""4.2 The Commutation Operation""; ""4.3 A Closed Formula for In (eBeA)""; ""4.4 A Closed Formula for the Logarithm of a T-Exponential""; ""5 Summary: Rules of â€Operator Arithmeticâ€? and Some Standard Techniques""; ""5.1 Notation""; ""5.2 Rules""; ""5.3 Standard Techniques""; ""II Method of Ordered Representation""; ""1 Ordered Representation: Definition and Main Property""; ""1.1 Wick Normal Form""; ""1.2 Ordered Representation and Theorem on Products""; ""1.3 Reduction to Normal Form"" | ||
500 | |a ""2 Some Examples""""2.1 Functions of the Operators x and â€? ihÓ?/dÓ?""; ""2.2 Perturbed Heisenberg Relations""; ""2.3 Examples of Nonlinear Commutation Relations""; ""2.4 Lie Commutation Relations""; ""2.5 Graded Lie Algebras""; ""3 Evaluation of the Ordered Representation Operators""; ""3.1 Equations for the Ordered Representation Operators""; ""3.2 How to Obtain the Solution""; ""3.3 Semilinear Commutation Relations""; ""4 The Jacobi Condition and Poincaré-Birkhoff-Witt Theorem""; ""4.1 Ordered Representation of Relation Systems and the Jacobi Condition"" | ||
500 | |a ""4.2 The Poincaré-Birkhoff-Witt Theorem""""4.3 Verification of the Jacobi Condition: Two Examples""; ""5 The Ordered Representations, Jacobi Condition, and the Yang-Baxter Equation""; ""6 Representations of Lie Groups and Functions of Their Generators""; ""6.1 Conditions on the Representation""; ""6.2 Hilbert Scales""; ""6.3 Symbol Spaces""; ""6.4 Symbol Classes: More Suitable for Asymptotic Problems""; ""III Noncommutative Analysis and Differential Equations""; ""1 Preliminaries""; ""1.1 Heaviside�s Operator Method for Differential Equations with Constant Coefficients"" | ||
650 | 4 | |a Geometry, Differential | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Noncommutative algebras | |
650 | 7 | |a MATHEMATICS / Functional Analysis |2 bisacsh | |
650 | 7 | |a Geometry, Differential |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 7 | |a Noncommutative algebras |2 fast | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Geometry, Differential | |
650 | 4 | |a Noncommutative algebras | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Nicht vertauschbarer Operator |0 (DE-588)4303614-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nicht vertauschbarer Operator |0 (DE-588)4303614-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Shatalov, V. E.7001 L |e Sonstige |4 oth | |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029185269 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=560593 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=560593 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176598918758400 |
---|---|
any_adam_object | |
author | Nazaĭkinskiĭ, V. E. |
author_facet | Nazaĭkinskiĭ, V. E. |
author_role | aut |
author_sort | Nazaĭkinskiĭ, V. E. |
author_variant | v e n ve ven |
building | Verbundindex |
bvnumber | BV043774209 |
collection | ZDB-4-EBA |
ctrlnum | (ZDB-4-EBA)ocn811372212 (OCoLC)811372212 (DE-599)BVBBV043774209 |
dewey-full | 515/.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.72 |
dewey-search | 515/.72 |
dewey-sort | 3515 272 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05272nmm a2200649zcb4500</leader><controlfield tag="001">BV043774209</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160920s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110813548</subfield><subfield code="9">978-3-11-081354-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110813548</subfield><subfield code="9">3-11-081354-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1306275261</subfield><subfield code="9">1-306-27526-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781306275262</subfield><subfield code="9">978-1-306-27526-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110146320</subfield><subfield code="9">3-11-014632-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110146325</subfield><subfield code="9">978-3-11-014632-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn811372212</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)811372212</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043774209</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.72</subfield><subfield code="2">20</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nazaĭkinskiĭ, V. E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Methods of noncommutative analysis</subfield><subfield code="b">theory and applications</subfield><subfield code="c">Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Walter de Gruyter</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 373 pages</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">22</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">""Preface""; ""I Elementary Notions of Noncommutative Analysis""; ""1 Some Situations where Functions of Noncommuting Operators Arise""; ""1.1 Nonautonomous Linear Differential Equations of First Order. T-Exponentials""; ""1.2 Operators of Quantum Mechanics. Creation and Annihilation Operators""; ""1.3 Differential and Integral Operators""; ""1.4 Problems of Perturbation Theory""; ""1.5 Multiplication Law in Lie Groups""; ""1.6 Eigenfunctions and Eigenvalues of the Quantum Oscillator""; ""1.7 T-Exponentials, Trotter Formulas, and Path Integrals""</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">""2 Functions of Noncommuting Operators: the Construction and Main Properties""""2.1 Motivations""; ""2.2 The Definition and the Uniqueness Theorem""; ""2.3 Basic Properties""; ""2.4 Tempered Symbols and Generators of Tempered Groups""; ""2.5 The Influence of the Symbol Classes on the Properties of Generators""; ""2.6 Weyl Quantization""; ""3 Noncommutative Differential Calculus""; ""3.1 The Derivation Formula""; ""3.2 The Daletskii-Krein Formula""; ""3.3 Higher-Order Expansions""; ""3.4 Permutation of Feynman Indices""; ""3.5 The Composite Function Formula""</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">""4 The Campbell-Hausdorff Theorem and Dynkinâ€?s Formula""""4.1 Statement of the Problem""; ""4.2 The Commutation Operation""; ""4.3 A Closed Formula for In (eBeA)""; ""4.4 A Closed Formula for the Logarithm of a T-Exponential""; ""5 Summary: Rules of â€Operator Arithmeticâ€? and Some Standard Techniques""; ""5.1 Notation""; ""5.2 Rules""; ""5.3 Standard Techniques""; ""II Method of Ordered Representation""; ""1 Ordered Representation: Definition and Main Property""; ""1.1 Wick Normal Form""; ""1.2 Ordered Representation and Theorem on Products""; ""1.3 Reduction to Normal Form""</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">""2 Some Examples""""2.1 Functions of the Operators x and â€? ihÓ?/dÓ?""; ""2.2 Perturbed Heisenberg Relations""; ""2.3 Examples of Nonlinear Commutation Relations""; ""2.4 Lie Commutation Relations""; ""2.5 Graded Lie Algebras""; ""3 Evaluation of the Ordered Representation Operators""; ""3.1 Equations for the Ordered Representation Operators""; ""3.2 How to Obtain the Solution""; ""3.3 Semilinear Commutation Relations""; ""4 The Jacobi Condition and Poincaré-Birkhoff-Witt Theorem""; ""4.1 Ordered Representation of Relation Systems and the Jacobi Condition""</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">""4.2 The Poincaré-Birkhoff-Witt Theorem""""4.3 Verification of the Jacobi Condition: Two Examples""; ""5 The Ordered Representations, Jacobi Condition, and the Yang-Baxter Equation""; ""6 Representations of Lie Groups and Functions of Their Generators""; ""6.1 Conditions on the Representation""; ""6.2 Hilbert Scales""; ""6.3 Symbol Spaces""; ""6.4 Symbol Classes: More Suitable for Asymptotic Problems""; ""III Noncommutative Analysis and Differential Equations""; ""1 Preliminaries""; ""1.1 Heavisideâ€?s Operator Method for Differential Equations with Constant Coefficients""</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noncommutative algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Functional Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Differential</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Noncommutative algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noncommutative algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nicht vertauschbarer Operator</subfield><subfield code="0">(DE-588)4303614-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nicht vertauschbarer Operator</subfield><subfield code="0">(DE-588)4303614-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shatalov, V. E.7001 L</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029185269</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=560593</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=560593</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043774209 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:34:44Z |
institution | BVB |
isbn | 9783110813548 3110813548 1306275261 9781306275262 3110146320 9783110146325 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029185269 |
oclc_num | 811372212 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | x, 373 pages |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Walter de Gruyter |
record_format | marc |
series2 | De Gruyter studies in mathematics |
spelling | Nazaĭkinskiĭ, V. E. Verfasser aut Methods of noncommutative analysis theory and applications Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin Berlin Walter de Gruyter 1995 x, 373 pages txt rdacontent c rdamedia cr rdacarrier De Gruyter studies in mathematics 22 Includes bibliographical references and index ""Preface""; ""I Elementary Notions of Noncommutative Analysis""; ""1 Some Situations where Functions of Noncommuting Operators Arise""; ""1.1 Nonautonomous Linear Differential Equations of First Order. T-Exponentials""; ""1.2 Operators of Quantum Mechanics. Creation and Annihilation Operators""; ""1.3 Differential and Integral Operators""; ""1.4 Problems of Perturbation Theory""; ""1.5 Multiplication Law in Lie Groups""; ""1.6 Eigenfunctions and Eigenvalues of the Quantum Oscillator""; ""1.7 T-Exponentials, Trotter Formulas, and Path Integrals"" ""2 Functions of Noncommuting Operators: the Construction and Main Properties""""2.1 Motivations""; ""2.2 The Definition and the Uniqueness Theorem""; ""2.3 Basic Properties""; ""2.4 Tempered Symbols and Generators of Tempered Groups""; ""2.5 The Influence of the Symbol Classes on the Properties of Generators""; ""2.6 Weyl Quantization""; ""3 Noncommutative Differential Calculus""; ""3.1 The Derivation Formula""; ""3.2 The Daletskii-Krein Formula""; ""3.3 Higher-Order Expansions""; ""3.4 Permutation of Feynman Indices""; ""3.5 The Composite Function Formula"" ""4 The Campbell-Hausdorff Theorem and Dynkinâ€?s Formula""""4.1 Statement of the Problem""; ""4.2 The Commutation Operation""; ""4.3 A Closed Formula for In (eBeA)""; ""4.4 A Closed Formula for the Logarithm of a T-Exponential""; ""5 Summary: Rules of â€Operator Arithmeticâ€? and Some Standard Techniques""; ""5.1 Notation""; ""5.2 Rules""; ""5.3 Standard Techniques""; ""II Method of Ordered Representation""; ""1 Ordered Representation: Definition and Main Property""; ""1.1 Wick Normal Form""; ""1.2 Ordered Representation and Theorem on Products""; ""1.3 Reduction to Normal Form"" ""2 Some Examples""""2.1 Functions of the Operators x and â€? ihÓ?/dÓ?""; ""2.2 Perturbed Heisenberg Relations""; ""2.3 Examples of Nonlinear Commutation Relations""; ""2.4 Lie Commutation Relations""; ""2.5 Graded Lie Algebras""; ""3 Evaluation of the Ordered Representation Operators""; ""3.1 Equations for the Ordered Representation Operators""; ""3.2 How to Obtain the Solution""; ""3.3 Semilinear Commutation Relations""; ""4 The Jacobi Condition and Poincaré-Birkhoff-Witt Theorem""; ""4.1 Ordered Representation of Relation Systems and the Jacobi Condition"" ""4.2 The Poincaré-Birkhoff-Witt Theorem""""4.3 Verification of the Jacobi Condition: Two Examples""; ""5 The Ordered Representations, Jacobi Condition, and the Yang-Baxter Equation""; ""6 Representations of Lie Groups and Functions of Their Generators""; ""6.1 Conditions on the Representation""; ""6.2 Hilbert Scales""; ""6.3 Symbol Spaces""; ""6.4 Symbol Classes: More Suitable for Asymptotic Problems""; ""III Noncommutative Analysis and Differential Equations""; ""1 Preliminaries""; ""1.1 Heavisideâ€?s Operator Method for Differential Equations with Constant Coefficients"" Geometry, Differential Mathematical physics Noncommutative algebras MATHEMATICS / Functional Analysis bisacsh Geometry, Differential fast Mathematical physics fast Noncommutative algebras fast Mathematische Physik Nicht vertauschbarer Operator (DE-588)4303614-4 gnd rswk-swf Nicht vertauschbarer Operator (DE-588)4303614-4 s 1\p DE-604 Shatalov, V. E.7001 L Sonstige oth 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Nazaĭkinskiĭ, V. E. Methods of noncommutative analysis theory and applications Geometry, Differential Mathematical physics Noncommutative algebras MATHEMATICS / Functional Analysis bisacsh Geometry, Differential fast Mathematical physics fast Noncommutative algebras fast Mathematische Physik Nicht vertauschbarer Operator (DE-588)4303614-4 gnd |
subject_GND | (DE-588)4303614-4 |
title | Methods of noncommutative analysis theory and applications |
title_auth | Methods of noncommutative analysis theory and applications |
title_exact_search | Methods of noncommutative analysis theory and applications |
title_full | Methods of noncommutative analysis theory and applications Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin |
title_fullStr | Methods of noncommutative analysis theory and applications Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin |
title_full_unstemmed | Methods of noncommutative analysis theory and applications Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin |
title_short | Methods of noncommutative analysis |
title_sort | methods of noncommutative analysis theory and applications |
title_sub | theory and applications |
topic | Geometry, Differential Mathematical physics Noncommutative algebras MATHEMATICS / Functional Analysis bisacsh Geometry, Differential fast Mathematical physics fast Noncommutative algebras fast Mathematische Physik Nicht vertauschbarer Operator (DE-588)4303614-4 gnd |
topic_facet | Geometry, Differential Mathematical physics Noncommutative algebras MATHEMATICS / Functional Analysis Mathematische Physik Nicht vertauschbarer Operator |
work_keys_str_mv | AT nazaikinskiive methodsofnoncommutativeanalysistheoryandapplications AT shatalovve7001l methodsofnoncommutativeanalysistheoryandapplications |