Notes on the infinity Laplace equation:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Cham]
Springer
[2016]
|
Schriftenreihe: | SpringerBriefs in mathematics
|
Schlagworte: | |
Online-Zugang: | BTU01 FHR01 FRO01 TUM01 UBM01 UBT01 UBW01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (IX, 68 Seiten, 1 illus. in color) |
ISBN: | 9783319315324 |
ISSN: | 2191-8198 |
DOI: | 10.1007/978-3-319-31532-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043746568 | ||
003 | DE-604 | ||
005 | 20220315 | ||
007 | cr|uuu---uuuuu | ||
008 | 160901s2016 |||| o||u| ||||||eng d | ||
020 | |a 9783319315324 |c Online |9 978-3-319-31532-4 | ||
024 | 7 | |a 10.1007/978-3-319-31532-4 |2 doi | |
035 | |a (ZDB-2-SMA)9783319315324 | ||
035 | |a (OCoLC)958183096 | ||
035 | |a (DE-599)BVBBV043746568 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-20 |a DE-739 |a DE-634 |a DE-898 |a DE-861 |a DE-703 |a DE-824 |a DE-83 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Lindqvist, Peter |e Verfasser |4 aut | |
245 | 1 | 0 | |a Notes on the infinity Laplace equation |c Peter Lindqvist |
264 | 1 | |a [Cham] |b Springer |c [2016] | |
300 | |a 1 Online-Ressource (IX, 68 Seiten, 1 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a SpringerBriefs in mathematics |x 2191-8198 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Image processing | |
650 | 4 | |a Differential equations | |
650 | 4 | |a Partial differential equations | |
650 | 4 | |a Computer mathematics | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Image Processing and Computer Vision | |
650 | 4 | |a Computational Science and Engineering | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Mathematik | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-319-31531-7 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-31532-4 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2016 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029158205 | ||
966 | e | |u https://doi.org/10.1007/978-3-319-31532-4 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-31532-4 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-31532-4 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-31532-4 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-31532-4 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-31532-4 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-31532-4 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-31532-4 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-31532-4 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176552498298880 |
---|---|
any_adam_object | |
author | Lindqvist, Peter |
author_facet | Lindqvist, Peter |
author_role | aut |
author_sort | Lindqvist, Peter |
author_variant | p l pl |
building | Verbundindex |
bvnumber | BV043746568 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9783319315324 (OCoLC)958183096 (DE-599)BVBBV043746568 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-31532-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02522nmm a2200589zc 4500</leader><controlfield tag="001">BV043746568</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220315 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160901s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319315324</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-31532-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-31532-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783319315324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)958183096</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043746568</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lindqvist, Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Notes on the infinity Laplace equation</subfield><subfield code="c">Peter Lindqvist</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Cham]</subfield><subfield code="b">Springer</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 68 Seiten, 1 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">SpringerBriefs in mathematics</subfield><subfield code="x">2191-8198</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image Processing and Computer Vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Science and Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-31531-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-31532-4</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2016</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029158205</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31532-4</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31532-4</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31532-4</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31532-4</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31532-4</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31532-4</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31532-4</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31532-4</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31532-4</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043746568 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:34:00Z |
institution | BVB |
isbn | 9783319315324 |
issn | 2191-8198 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029158205 |
oclc_num | 958183096 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-20 DE-739 DE-634 DE-898 DE-BY-UBR DE-861 DE-703 DE-824 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-20 DE-739 DE-634 DE-898 DE-BY-UBR DE-861 DE-703 DE-824 DE-83 |
physical | 1 Online-Ressource (IX, 68 Seiten, 1 illus. in color) |
psigel | ZDB-2-SMA ZDB-2-SMA_2016 |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Springer |
record_format | marc |
series2 | SpringerBriefs in mathematics |
spelling | Lindqvist, Peter Verfasser aut Notes on the infinity Laplace equation Peter Lindqvist [Cham] Springer [2016] 1 Online-Ressource (IX, 68 Seiten, 1 illus. in color) txt rdacontent c rdamedia cr rdacarrier SpringerBriefs in mathematics 2191-8198 Mathematics Image processing Differential equations Partial differential equations Computer mathematics Partial Differential Equations Image Processing and Computer Vision Computational Science and Engineering Ordinary Differential Equations Mathematik Erscheint auch als Druck-Ausgabe 978-3-319-31531-7 https://doi.org/10.1007/978-3-319-31532-4 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Lindqvist, Peter Notes on the infinity Laplace equation Mathematics Image processing Differential equations Partial differential equations Computer mathematics Partial Differential Equations Image Processing and Computer Vision Computational Science and Engineering Ordinary Differential Equations Mathematik |
title | Notes on the infinity Laplace equation |
title_auth | Notes on the infinity Laplace equation |
title_exact_search | Notes on the infinity Laplace equation |
title_full | Notes on the infinity Laplace equation Peter Lindqvist |
title_fullStr | Notes on the infinity Laplace equation Peter Lindqvist |
title_full_unstemmed | Notes on the infinity Laplace equation Peter Lindqvist |
title_short | Notes on the infinity Laplace equation |
title_sort | notes on the infinity laplace equation |
topic | Mathematics Image processing Differential equations Partial differential equations Computer mathematics Partial Differential Equations Image Processing and Computer Vision Computational Science and Engineering Ordinary Differential Equations Mathematik |
topic_facet | Mathematics Image processing Differential equations Partial differential equations Computer mathematics Partial Differential Equations Image Processing and Computer Vision Computational Science and Engineering Ordinary Differential Equations Mathematik |
url | https://doi.org/10.1007/978-3-319-31532-4 |
work_keys_str_mv | AT lindqvistpeter notesontheinfinitylaplaceequation |