Introduction to computation and programming using Python: with application to understanding data
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, MA
The MIT Press
[2016]
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xv, 447 Seiten Illustrationen |
ISBN: | 9780262529624 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043729336 | ||
003 | DE-604 | ||
005 | 20211220 | ||
007 | t | ||
008 | 160823s2016 xxua||| |||| 00||| eng d | ||
010 | |a 016019367 | ||
020 | |a 9780262529624 |9 978-0-262-52962-4 | ||
035 | |a (OCoLC)964453856 | ||
035 | |a (DE-599)BVBBV043729336 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-83 |a DE-188 |a DE-91G |a DE-Aug4 |a DE-523 |a DE-703 |a DE-355 |a DE-N2 |a DE-384 |a DE-862 |a DE-739 | ||
050 | 0 | |a QA76.73.P98 | |
082 | 0 | |a 005.13/3 |2 23 | |
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a DAT 366f |2 stub | ||
100 | 1 | |a Guttag, John |d 1949- |e Verfasser |0 (DE-588)1161115846 |4 aut | |
245 | 1 | 0 | |a Introduction to computation and programming using Python |b with application to understanding data |c John V. Guttag |
250 | |a Second edition | ||
264 | 1 | |a Cambridge, MA |b The MIT Press |c [2016] | |
300 | |a xv, 447 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Python (Computer program language) |v Textbooks | |
650 | 4 | |a Computer programming |v Textbooks | |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Augsburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029141232&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029141232 |
Datensatz im Suchindex
DE-BY-862_location | 2000 |
---|---|
DE-BY-FWS_call_number | 2000/ST 250 P99 G985(2) |
DE-BY-FWS_katkey | 740915 |
DE-BY-FWS_media_number | 083000523132 |
_version_ | 1806176672901234688 |
adam_text | CONTENTS PREFACE..................................................................................................................... xiii ACKNOWLEDGMENTS..........................................................................................xvii 1 GETTING STARTED................................................................................................ 1 2 INTRODUCTION TO PYTHON............................................................................7 2.1 The Basic Elements of Python...................................................................9 2.1.1 Objects, Expressions, and Numerical Types....................................... 9 2.1.2 Variables and Assignment................................................................ 12 2.1.3 Python IDE’s.....................................................................................14 2.2 Branching Programs................................................................................ 15 2.3 Strings and Input.....................................................................................18 2.3.1 Input..................................................................................................20 2.3.2 A Digression About Character Encoding.........................................21 2.4 Iteration...................................................................................................22 3 SOME SIMPLE NUMERICAL PROGRAMS...................................................... 25 3.1 3.2 3.3 3.4 3.5 Exhaustive Enumeration.........................................................................25
For Loops.................................................................................................27 Approximate Solutions and Bisection Search.........................................30 A Few Words About Using Floats........................................................... 34 Newton-Raphson.....................................................................................37 4 FUNCTIONS, SCOPING, AND ABSTRACTION.............................................39 4.1 Functions and Scoping............................................................................40 4.1.1 Function Definitions........................................................................ 40 4.1.2 Keyword Arguments and Default Values..........................................42 4.1.3 Scoping..............................................................................................43 4.2 Specifications........................................................................................... 47 4.3 Recursion.................................................................................................50 4.3.1 Fibonacci Numbers......................................................................... 52 4.3.2 Palindromes...................................................................................... 54 4.4 Global Variables...................................................................................... 57 4.5 Modules.................................................................................................. 59 4.6
Files......................................................................................................... 61
INTRODUCTION TO COMPUTATION AND PROGRAMMING USING PYTHON viii 5 STRUCTURED TYPES, MUTABILITY, AND HIGHER-ORDER FUNCTIONS............................................................................................................ 65 5.1 Tuples...................................................................................................... 65 5.1.1 Sequences and Multiple Assignment................................................ 67 5.2 Ranges..................................................................................................... 67 5.3 Lists and Mutability.................................................................................68 5.3.1 Cloning............................................................................................. 73 5.3.2 List Comprehension......................................................................... 74 5.4 Functions as Objects................................................................................ 75 5.5 Strings, Tuples, Ranges, and Lists........................................................... 77 5.6 Dictionaries............................................................................................. 79 6 TESTING AND DEBUGGING..............................................................................85 6.1 Testing..................................................................................................... 86 6.1.1 Black-Box Testing............................................................................. 87 6.1.2 Glass-box
Testing.............................................................................. 88 6.1.3 Conducting Tests.............................................................................. 90 6.2 Debugging...............................................................................................92 6.2.1 Learning to Debug............................................................................ 94 6.2.2 Designing the Experiment................................................................ 95 6.2.3 When the Going Gets Tough............................................................ 98 6.2.4 When You Have Found “The” Bug...................................................99 7 EXCEPTIONS AND ASSERTIONS................................................................... 101 7.1 7.2 7.3 Handling Exceptions............................................................................. 101 Exceptions as a Control Flow Mechanism.............................................105 Assertions.............................................................................................. 108 8 CLASSES AND OBJECT-ORIENTED PROGRAMMING.............................109 8.1 Abstract Data Types and Classes...........................................................109 8.1.1 Designing Programs Using Abstract Data Types............................114 8.1.2 Using Classes to Keep Track of Students and Faculty.................... 115 8.2 Inheritance............................................................................................. 118 8.2.1 Multiple Levels of
Inheritance.........................................................121 8.2.2 The Substitution Principle.............................................................. 123 8.3 Encapsulation and Information Hiding................................................ 123 8.3.1 Generators...................................................................................... 128 8.4 Mortgages, an Extended Example..........................................................130 9 A SIMPLISTIC INTRODUCTION TO ALGORITHMIC COMPLEXITY.. 135 9.1 9.2 Thinking About Computational Complexity........................................ 135 Asymptotic Notation............................................................................. 139
CONTENTS ix 9.3Some Important Complexity Classes.........................................................141 9.3.1 Constant Complexity......................................................................141 9.3.2 Logarithmic Complexity................................................................. 141 9.3.3 Linear Complexity...........................................................................142 9.3.4 Log-Linear Complexity................................................................... 144 9.3.5 Polynomial Complexity.................................................................. 144 9.3.6 Exponential Complexity................................................................. 145 9.3.7 Comparisons of Complexity Classes...............................................147 10 SOME SIMPLE ALGORITHMS AND DATA STRUCTURES......................151 10.1 Search Algorithms................................................................................. 152 10.1.1 Linear Search and Using Indirection to Access Elements..............153 10.1.2 Binary Search and Exploiting Assumptions................................... 154 10.2 Sorting Algorithms................................................................................ 158 10.2.1 Merge Sort.......................................................................................159 10.2.2 Exploiting Functions as Parameters............................................... 162 10.2.3 Sorting in Python............................................................................ 162 10.3 Hash
Tables........................................................................................... 164 11 PLOTTING AND MORE ABOUT CLASSES................................................... 169 11.1 Plotting Using PyLab............................................................................. 169 11.2 Plotting Mortgages, an Extended Example............................................175 12 KNAPSACK AND GRAPH OPTIMIZATION PROBLEMS...........................183 12.1 Knapsack Problems............................................................................... 184 12.1.1 Greedy Algorithms..........................................................................184 12.1.2 An Optimal Solution to the 0/1 Knapsack Problem...................... 188 12.2 Graph Optimization Problems.............................................................. 190 12.2.1 Some Classic Graph-Theoretic Problems....................................... 195 12.2.2 Shortest Path: Depth-First Search and Breadth-First Search........ 196 13 DYNAMIC PROGRAMMING............................................................................203 13.1 Fibonacci Sequences, Revisited............................................................. 203 13.2 Dynamic Programming and the 0/1Knapsack Problem..................... 205 13.3 Dynamic Programming and Divide-and-Conquer.............................. 213 14 RANDOM WALKS AND MORE ABOUT DATA VISUALIZATION........ 215 14.1 14.2 14.3 14.4 Random Walks...................................................................................... 216 The Drunkard’s
Walk............................................................................ 217 Biased Random Walks........................................................................... 224 Treacherous Fields.................................................................................231
x INTRODUCTION TO COMPUTATION AND PROGRAMMING USING PYTHON 15 STOCHASTIC PROGRAMS, PROBABILITY, AND DISTRIBUTIONS.... 235 15.1 Stochastic Programs.............................................................................. 236 15.2 Calculating Simple Probabilities........................................................... 238 15.3 Inferential Statistics............................................................................... 239 15.4 Distributions......................................................................................... 254 15.4.1 Probability Distributions................................................................ 256 15.4.2 Normal Distributions......................................................................258 15.4.3 Continuous and Discrete Uniform Distributions.......................... 263 15.4.4 Binomial and Multinomial Distributions...................................... 264 15.4.5 Exponential and Geometric Distributions..................................... 265 15.4.6 Benfords Distribution.....................................................................269 15.5 Hashing and Collisions......................................................................... 269 15.6 How Often Does the Better Team Win?................................................272 16 MONTE CARLO SIMULATION...................................................................... 275 16.1 16.2 16.3 16.4 16.5 Pascal’s Problem.....................................................................................276 Pass or Don’t
Pass?.................................................................................277 Using Table Lookup to Improve Performance......................................282 Finding π................................................................................................283 Some Closing Remarks About Simulation Models............................... 288 17 SAMPLING AND CONFIDENCE INTERVALS..............................................291 17.1 Sampling the Boston Marathon............................................................ 292 17.2 The Central Limit Theorem..................................................................298 17.3 Standard Error of the Mean..................................................................302 18 UNDERSTANDING EXPERIMENTAL DATA................................................305 18.1 The Behavior of Springs........................................................................ 305 18.1.1 Using Linear Regression to Find a Fit............................................309 18.2 The Behavior of Projectiles...................................................................314 18.2.1 Coefficient of Determination......................................................... 317 18.2.2 Using a Computational Model........................................................319 18.3 Fitting Exponentially Distributed Data................................................. 320 18.4 When Theory Is Missing........................................................................324 19 RANDOMIZED TRIALS AND HYPOTHESIS CHECKING........................ 327
19.1 19.2 19.3 19.4 19.5 19.6 Checking Significance........................................................................... 328 Beware of P-values.................................................................................334 One-tail and One-sample Tests............................................................. 336 Significant or Not?.................................................................................338 Which N?...............................................................................................340 Multiple Hypotheses.............................................................................. 342
CONTENTS xi 20 CONDITIONAL PROBABILITY AND BAYESIAN STATISTICS................ 345 20.1 Conditional Probabilities...........................................................................346 20.2 Bayes’Theorem.......................................................................................... 348 20.3 Bayesian Updating......................................................................................350 21 LIES, DAMNED LIES, AND STATISTICS............................................................355 21.1 Garbage In Garbage Out (GIGO).............................................................355 21.2 Tests Are Imperfect.................................................................................. 356 21.3 Pictures Can Be Deceiving.........................................................................357 21.4 Cum Hoc Ergo Propter Hoc......................................................................359 21.5 Statistical Measures Don’t Tell the Whole Story..................................... 361 21.6 Sampling Bias............................................................................................. 362 21.7 Context Matters......................................................................................... 363 21.8 Beware of Extrapolation.............................................................................364 21.9 The Texas Sharpshooter Fallacy................................................................364 21.10 Percentages Can Confuse...........................................................................367 21.11 Statistically
Significant Differences Can Be Insignificant...................... 368 21.12 The Regressive Fallacy...............................................................................369 21.13 Just Beware................................................................................................. 370 22 A QUICK LOOK AT MACHINE LEARNING.................................................... 371 22.1 Feature Vectors.......................................................................................... 374 22.2 Distance Metrics........................................................................................ 377 23 CLUSTERING............................................................................................................... 383 23.1 23.2 23.3 23.4 Class Cluster............................................................................................... 385 К-means Clustering....................................................................................387 A Contrived Example.................................................................................390 A Less Contrived Example.........................................................................395 24 CLASSIFICATION METHODS............................................................................... 403 24.1 24.2 24.3 24.4 24.5 24.6 Evaluating Classifiers................................................................................ 403 Predicting the Gender of Runners............................................................408 К-nearest
Neighbors.................................................................................. 408 Regression-based Classifiers......................................................................415 Surviving the Titanic................................................................................. 425 Wrapping Up.............................................................................................. 430 PYTHON 3.5 QUICK REFERENCE............................................................................. 431 INDEX................................................................................................................................... 435
|
any_adam_object | 1 |
author | Guttag, John 1949- |
author_GND | (DE-588)1161115846 |
author_facet | Guttag, John 1949- |
author_role | aut |
author_sort | Guttag, John 1949- |
author_variant | j g jg |
building | Verbundindex |
bvnumber | BV043729336 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.73.P98 |
callnumber-search | QA76.73.P98 |
callnumber-sort | QA 276.73 P98 |
callnumber-subject | QA - Mathematics |
classification_rvk | ST 250 |
classification_tum | DAT 366f |
ctrlnum | (OCoLC)964453856 (DE-599)BVBBV043729336 |
dewey-full | 005.13/3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.13/3 |
dewey-search | 005.13/3 |
dewey-sort | 15.13 13 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01657nam a2200409 c 4500</leader><controlfield tag="001">BV043729336</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211220 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">160823s2016 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">016019367</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262529624</subfield><subfield code="9">978-0-262-52962-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)964453856</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043729336</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.73.P98</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.13/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 366f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guttag, John</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1161115846</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to computation and programming using Python</subfield><subfield code="b">with application to understanding data</subfield><subfield code="c">John V. Guttag</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, MA</subfield><subfield code="b">The MIT Press</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 447 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield><subfield code="v">Textbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer programming</subfield><subfield code="v">Textbooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029141232&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029141232</subfield></datafield></record></collection> |
id | DE-604.BV043729336 |
illustrated | Illustrated |
indexdate | 2024-08-01T11:25:02Z |
institution | BVB |
isbn | 9780262529624 |
language | English |
lccn | 016019367 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029141232 |
oclc_num | 964453856 |
open_access_boolean | |
owner | DE-83 DE-188 DE-91G DE-BY-TUM DE-Aug4 DE-523 DE-703 DE-355 DE-BY-UBR DE-N2 DE-384 DE-862 DE-BY-FWS DE-739 |
owner_facet | DE-83 DE-188 DE-91G DE-BY-TUM DE-Aug4 DE-523 DE-703 DE-355 DE-BY-UBR DE-N2 DE-384 DE-862 DE-BY-FWS DE-739 |
physical | xv, 447 Seiten Illustrationen |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | The MIT Press |
record_format | marc |
spellingShingle | Guttag, John 1949- Introduction to computation and programming using Python with application to understanding data Python (Computer program language) Textbooks Computer programming Textbooks Python Programmiersprache (DE-588)4434275-5 gnd |
subject_GND | (DE-588)4434275-5 |
title | Introduction to computation and programming using Python with application to understanding data |
title_auth | Introduction to computation and programming using Python with application to understanding data |
title_exact_search | Introduction to computation and programming using Python with application to understanding data |
title_full | Introduction to computation and programming using Python with application to understanding data John V. Guttag |
title_fullStr | Introduction to computation and programming using Python with application to understanding data John V. Guttag |
title_full_unstemmed | Introduction to computation and programming using Python with application to understanding data John V. Guttag |
title_short | Introduction to computation and programming using Python |
title_sort | introduction to computation and programming using python with application to understanding data |
title_sub | with application to understanding data |
topic | Python (Computer program language) Textbooks Computer programming Textbooks Python Programmiersprache (DE-588)4434275-5 gnd |
topic_facet | Python (Computer program language) Textbooks Computer programming Textbooks Python Programmiersprache |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029141232&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT guttagjohn introductiontocomputationandprogrammingusingpythonwithapplicationtounderstandingdata |
Inhaltsverzeichnis
THWS Schweinfurt Zentralbibliothek Lesesaal
Signatur: |
2000 ST 250 P99 G985(2) |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |