The action principle and partial differential equations:
This book introduces new methods in the theory of partial differential equations derivable from a Lagrangian. These methods constitute, in part, an extension to partial differential equations of the methods of symplectic geometry and Hamilton-Jacobi theory for Lagrangian systems of ordinary differen...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2000]
|
Schriftenreihe: | Annals of Mathematics Studies
number 146 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book introduces new methods in the theory of partial differential equations derivable from a Lagrangian. These methods constitute, in part, an extension to partial differential equations of the methods of symplectic geometry and Hamilton-Jacobi theory for Lagrangian systems of ordinary differential equations. A distinguishing characteristic of this approach is that one considers, at once, entire families of solutions of the Euler-Lagrange equations, rather than restricting attention to single solutions at a time. The second part of the book develops a general theory of integral identities, the theory of "compatible currents," which extends the work of E. Noether. Finally, the third part introduces a new general definition of hyperbolicity, based on a quadratic form associated with the Lagrangian, which overcomes the obstacles arising from singularities of the characteristic variety that were encountered in previous approaches. On the basis of the new definition, the domain-of-dependence theorem and stability properties of solutions are derived. Applications to continuum mechanics are discussed throughout the book. The last chapter is devoted to the electrodynamics of nonlinear continuous media |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400882687 |
DOI: | 10.1515/9781400882687 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712528 | ||
003 | DE-604 | ||
005 | 20200331 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781400882687 |9 978-1-4008-8268-7 | ||
024 | 7 | |a 10.1515/9781400882687 |2 doi | |
035 | |a (ZDB-23-DGG)9781400882687 | ||
035 | |a (OCoLC)1165470972 | ||
035 | |a (DE-599)BVBBV043712528 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 510 |2 22 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
100 | 1 | |a Christodulu, Dēmētrēs Ch. |d 1951- |0 (DE-588)1049266897 |4 aut | |
245 | 1 | 0 | |a The action principle and partial differential equations |c Demetrios Christodoulou |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2000] | |
264 | 4 | |c © 2000 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 146 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) | ||
520 | |a This book introduces new methods in the theory of partial differential equations derivable from a Lagrangian. These methods constitute, in part, an extension to partial differential equations of the methods of symplectic geometry and Hamilton-Jacobi theory for Lagrangian systems of ordinary differential equations. A distinguishing characteristic of this approach is that one considers, at once, entire families of solutions of the Euler-Lagrange equations, rather than restricting attention to single solutions at a time. The second part of the book develops a general theory of integral identities, the theory of "compatible currents," which extends the work of E. Noether. Finally, the third part introduces a new general definition of hyperbolicity, based on a quadratic form associated with the Lagrangian, which overcomes the obstacles arising from singularities of the characteristic variety that were encountered in previous approaches. On the basis of the new definition, the domain-of-dependence theorem and stability properties of solutions are derived. Applications to continuum mechanics are discussed throughout the book. The last chapter is devoted to the electrodynamics of nonlinear continuous media | ||
546 | |a In English | ||
650 | 4 | |a Differential equations, Hyperbolic | |
650 | 4 | |a Symplectic manifolds | |
650 | 0 | 7 | |a Symplektische Mannigfaltigkeit |0 (DE-588)4290704-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 0 | 1 | |a Symplektische Mannigfaltigkeit |0 (DE-588)4290704-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0-691-04956-4 |
830 | 0 | |a Annals of Mathematics Studies |v number 146 |w (DE-604)BV040389493 |9 146 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400882687?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124756 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498637144064 |
---|---|
any_adam_object | |
author | Christodulu, Dēmētrēs Ch. 1951- |
author_GND | (DE-588)1049266897 |
author_facet | Christodulu, Dēmētrēs Ch. 1951- |
author_role | aut |
author_sort | Christodulu, Dēmētrēs Ch. 1951- |
author_variant | d c c dc dcc |
building | Verbundindex |
bvnumber | BV043712528 |
classification_rvk | SK 540 SK 560 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400882687 (OCoLC)1165470972 (DE-599)BVBBV043712528 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400882687 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03554nmm a2200565 cb4500</leader><controlfield tag="001">BV043712528</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200331 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400882687</subfield><subfield code="9">978-1-4008-8268-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400882687</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400882687</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165470972</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712528</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Christodulu, Dēmētrēs Ch.</subfield><subfield code="d">1951-</subfield><subfield code="0">(DE-588)1049266897</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The action principle and partial differential equations</subfield><subfield code="c">Demetrios Christodoulou</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2000]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 146</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book introduces new methods in the theory of partial differential equations derivable from a Lagrangian. These methods constitute, in part, an extension to partial differential equations of the methods of symplectic geometry and Hamilton-Jacobi theory for Lagrangian systems of ordinary differential equations. A distinguishing characteristic of this approach is that one considers, at once, entire families of solutions of the Euler-Lagrange equations, rather than restricting attention to single solutions at a time. The second part of the book develops a general theory of integral identities, the theory of "compatible currents," which extends the work of E. Noether. Finally, the third part introduces a new general definition of hyperbolicity, based on a quadratic form associated with the Lagrangian, which overcomes the obstacles arising from singularities of the characteristic variety that were encountered in previous approaches. On the basis of the new definition, the domain-of-dependence theorem and stability properties of solutions are derived. Applications to continuum mechanics are discussed throughout the book. The last chapter is devoted to the electrodynamics of nonlinear continuous media</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Hyperbolic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symplectic manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0-691-04956-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 146</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">146</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400882687?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124756</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712528 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400882687 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124756 |
oclc_num | 1165470972 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Christodulu, Dēmētrēs Ch. 1951- (DE-588)1049266897 aut The action principle and partial differential equations Demetrios Christodoulou Princeton, NJ Princeton University Press [2000] © 2000 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 146 Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) This book introduces new methods in the theory of partial differential equations derivable from a Lagrangian. These methods constitute, in part, an extension to partial differential equations of the methods of symplectic geometry and Hamilton-Jacobi theory for Lagrangian systems of ordinary differential equations. A distinguishing characteristic of this approach is that one considers, at once, entire families of solutions of the Euler-Lagrange equations, rather than restricting attention to single solutions at a time. The second part of the book develops a general theory of integral identities, the theory of "compatible currents," which extends the work of E. Noether. Finally, the third part introduces a new general definition of hyperbolicity, based on a quadratic form associated with the Lagrangian, which overcomes the obstacles arising from singularities of the characteristic variety that were encountered in previous approaches. On the basis of the new definition, the domain-of-dependence theorem and stability properties of solutions are derived. Applications to continuum mechanics are discussed throughout the book. The last chapter is devoted to the electrodynamics of nonlinear continuous media In English Differential equations, Hyperbolic Symplectic manifolds Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 s Symplektische Mannigfaltigkeit (DE-588)4290704-4 s 1\p DE-604 Partielle Differentialgleichung (DE-588)4044779-0 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 0-691-04956-4 Annals of Mathematics Studies number 146 (DE-604)BV040389493 146 https://doi.org/10.1515/9781400882687?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Christodulu, Dēmētrēs Ch. 1951- The action principle and partial differential equations Annals of Mathematics Studies Differential equations, Hyperbolic Symplectic manifolds Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4290704-4 (DE-588)4131213-2 (DE-588)4044779-0 |
title | The action principle and partial differential equations |
title_auth | The action principle and partial differential equations |
title_exact_search | The action principle and partial differential equations |
title_full | The action principle and partial differential equations Demetrios Christodoulou |
title_fullStr | The action principle and partial differential equations Demetrios Christodoulou |
title_full_unstemmed | The action principle and partial differential equations Demetrios Christodoulou |
title_short | The action principle and partial differential equations |
title_sort | the action principle and partial differential equations |
topic | Differential equations, Hyperbolic Symplectic manifolds Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Differential equations, Hyperbolic Symplectic manifolds Symplektische Mannigfaltigkeit Hyperbolische Differentialgleichung Partielle Differentialgleichung |
url | https://doi.org/10.1515/9781400882687?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT christoduludemetresch theactionprincipleandpartialdifferentialequations |