Period spaces for "p"-divisible groups:
In this monograph p-adic period domains are associated to arbitrary reductive groups. Using the concept of rigid-analytic period maps the relation of p-adic period domains to moduli space of p-divisible groups is investigated. In addition, non-archimedean uniformization theorems for general Shimura...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[1996]
|
Schriftenreihe: | Annals of Mathematics Studies
number 141 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In this monograph p-adic period domains are associated to arbitrary reductive groups. Using the concept of rigid-analytic period maps the relation of p-adic period domains to moduli space of p-divisible groups is investigated. In addition, non-archimedean uniformization theorems for general Shimura varieties are established. The exposition includes background material on Grothendieck's "mysterious functor" (Fontaine theory), on moduli problems of p-divisible groups, on rigid analytic spaces, and on the theory of Shimura varieties, as well as an exposition of some aspects of Drinfelds' original construction. In addition, the material is illustrated throughout the book with numerous examples |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400882601 |
DOI: | 10.1515/9781400882601 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712520 | ||
003 | DE-604 | ||
005 | 20200324 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1996 |||| o||u| ||||||eng d | ||
020 | |a 9781400882601 |9 978-1-4008-8260-1 | ||
024 | 7 | |a 10.1515/9781400882601 |2 doi | |
035 | |a (ZDB-23-DGG)9781400882601 | ||
035 | |a (OCoLC)1165504979 | ||
035 | |a (DE-599)BVBBV043712520 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 512.2 |2 22 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Rapoport, Michael |d 1948- |0 (DE-588)140462945 |4 aut | |
245 | 1 | 0 | |a Period spaces for "p"-divisible groups |c Michael Rapoport, Thomas Zink |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [1996] | |
264 | 4 | |c © 1996 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 141 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) | ||
520 | |a In this monograph p-adic period domains are associated to arbitrary reductive groups. Using the concept of rigid-analytic period maps the relation of p-adic period domains to moduli space of p-divisible groups is investigated. In addition, non-archimedean uniformization theorems for general Shimura varieties are established. The exposition includes background material on Grothendieck's "mysterious functor" (Fontaine theory), on moduli problems of p-divisible groups, on rigid analytic spaces, and on the theory of Shimura varieties, as well as an exposition of some aspects of Drinfelds' original construction. In addition, the material is illustrated throughout the book with numerous examples | ||
546 | |a In English | ||
650 | 4 | |a Moduli theory | |
650 | 4 | |a p-adic groups | |
650 | 4 | |a p-divisible groups | |
650 | 0 | 7 | |a Modulraum |0 (DE-588)4183462-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a p-teilbare Gruppe |0 (DE-588)4124001-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a p-teilbare Gruppe |0 (DE-588)4124001-7 |D s |
689 | 0 | 1 | |a Modulraum |0 (DE-588)4183462-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Zink, Thomas |d 1949- |0 (DE-588)132015919 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-02781-4 |
830 | 0 | |a Annals of Mathematics Studies |v number 141 |w (DE-604)BV040389493 |9 141 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400882601?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124748 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498624561152 |
---|---|
any_adam_object | |
author | Rapoport, Michael 1948- Zink, Thomas 1949- |
author_GND | (DE-588)140462945 (DE-588)132015919 |
author_facet | Rapoport, Michael 1948- Zink, Thomas 1949- |
author_role | aut aut |
author_sort | Rapoport, Michael 1948- |
author_variant | m r mr t z tz |
building | Verbundindex |
bvnumber | BV043712520 |
classification_rvk | SI 830 SK 230 SK 240 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400882601 (OCoLC)1165504979 (DE-599)BVBBV043712520 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400882601 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02782nmm a2200553 cb4500</leader><controlfield tag="001">BV043712520</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200324 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400882601</subfield><subfield code="9">978-1-4008-8260-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400882601</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400882601</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165504979</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712520</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rapoport, Michael</subfield><subfield code="d">1948-</subfield><subfield code="0">(DE-588)140462945</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Period spaces for "p"-divisible groups</subfield><subfield code="c">Michael Rapoport, Thomas Zink</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[1996]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 141</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this monograph p-adic period domains are associated to arbitrary reductive groups. Using the concept of rigid-analytic period maps the relation of p-adic period domains to moduli space of p-divisible groups is investigated. In addition, non-archimedean uniformization theorems for general Shimura varieties are established. The exposition includes background material on Grothendieck's "mysterious functor" (Fontaine theory), on moduli problems of p-divisible groups, on rigid analytic spaces, and on the theory of Shimura varieties, as well as an exposition of some aspects of Drinfelds' original construction. In addition, the material is illustrated throughout the book with numerous examples</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moduli theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">p-adic groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">p-divisible groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulraum</subfield><subfield code="0">(DE-588)4183462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">p-teilbare Gruppe</subfield><subfield code="0">(DE-588)4124001-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">p-teilbare Gruppe</subfield><subfield code="0">(DE-588)4124001-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modulraum</subfield><subfield code="0">(DE-588)4183462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zink, Thomas</subfield><subfield code="d">1949-</subfield><subfield code="0">(DE-588)132015919</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-02781-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 141</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">141</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400882601?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124748</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712520 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400882601 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124748 |
oclc_num | 1165504979 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Rapoport, Michael 1948- (DE-588)140462945 aut Period spaces for "p"-divisible groups Michael Rapoport, Thomas Zink Princeton, NJ Princeton University Press [1996] © 1996 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 141 Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) In this monograph p-adic period domains are associated to arbitrary reductive groups. Using the concept of rigid-analytic period maps the relation of p-adic period domains to moduli space of p-divisible groups is investigated. In addition, non-archimedean uniformization theorems for general Shimura varieties are established. The exposition includes background material on Grothendieck's "mysterious functor" (Fontaine theory), on moduli problems of p-divisible groups, on rigid analytic spaces, and on the theory of Shimura varieties, as well as an exposition of some aspects of Drinfelds' original construction. In addition, the material is illustrated throughout the book with numerous examples In English Moduli theory p-adic groups p-divisible groups Modulraum (DE-588)4183462-8 gnd rswk-swf p-teilbare Gruppe (DE-588)4124001-7 gnd rswk-swf p-teilbare Gruppe (DE-588)4124001-7 s Modulraum (DE-588)4183462-8 s 1\p DE-604 Zink, Thomas 1949- (DE-588)132015919 aut Erscheint auch als Druck-Ausgabe 978-0-691-02781-4 Annals of Mathematics Studies number 141 (DE-604)BV040389493 141 https://doi.org/10.1515/9781400882601?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rapoport, Michael 1948- Zink, Thomas 1949- Period spaces for "p"-divisible groups Annals of Mathematics Studies Moduli theory p-adic groups p-divisible groups Modulraum (DE-588)4183462-8 gnd p-teilbare Gruppe (DE-588)4124001-7 gnd |
subject_GND | (DE-588)4183462-8 (DE-588)4124001-7 |
title | Period spaces for "p"-divisible groups |
title_auth | Period spaces for "p"-divisible groups |
title_exact_search | Period spaces for "p"-divisible groups |
title_full | Period spaces for "p"-divisible groups Michael Rapoport, Thomas Zink |
title_fullStr | Period spaces for "p"-divisible groups Michael Rapoport, Thomas Zink |
title_full_unstemmed | Period spaces for "p"-divisible groups Michael Rapoport, Thomas Zink |
title_short | Period spaces for "p"-divisible groups |
title_sort | period spaces for p divisible groups |
topic | Moduli theory p-adic groups p-divisible groups Modulraum (DE-588)4183462-8 gnd p-teilbare Gruppe (DE-588)4124001-7 gnd |
topic_facet | Moduli theory p-adic groups p-divisible groups Modulraum p-teilbare Gruppe |
url | https://doi.org/10.1515/9781400882601?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT rapoportmichael periodspacesforpdivisiblegroups AT zinkthomas periodspacesforpdivisiblegroups |