Hyperfunctions on hypo-analytic manifolds:
In the first two chapters of this book, the reader will find a complete and systematic exposition of the theory of hyperfunctions on totally real submanifolds of multidimensional complex space, in particular of hyperfunction theory in real space. The book provides precise definitions of the hypo-ana...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[1995]
|
Schriftenreihe: | Annals of Mathematics Studies
number 136 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In the first two chapters of this book, the reader will find a complete and systematic exposition of the theory of hyperfunctions on totally real submanifolds of multidimensional complex space, in particular of hyperfunction theory in real space. The book provides precise definitions of the hypo-analytic wave-front set and of the Fourier-Bros-Iagolnitzer transform of a hyperfunction. These are used to prove a very general version of the famed Theorem of the Edge of the Wedge. The last two chapters define the hyperfunction solutions on a general (smooth) hypo-analytic manifold, of which particular examples are the real analytic manifolds and the embedded CR manifolds. The main results here are the invariance of the spaces of hyperfunction solutions and the transversal smoothness of every hyperfunction solution. From this follows the uniqueness of solutions in the Cauchy problem with initial data on a maximally real submanifold, and the fact that the support of any solution is the union of orbits of the structure |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400882564 |
DOI: | 10.1515/9781400882564 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712516 | ||
003 | DE-604 | ||
005 | 20200324 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1995 |||| o||u| ||||||eng d | ||
020 | |a 9781400882564 |9 978-1-4008-8256-4 | ||
024 | 7 | |a 10.1515/9781400882564 |2 doi | |
035 | |a (ZDB-23-DGG)9781400882564 | ||
035 | |a (OCoLC)1165548155 | ||
035 | |a (DE-599)BVBBV043712516 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 515/.782 |2 23 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a SK 780 |0 (DE-625)143255: |2 rvk | ||
100 | 1 | |a Cordaro, Paulo Domingos |0 (DE-588)1158473125 |4 aut | |
245 | 1 | 0 | |a Hyperfunctions on hypo-analytic manifolds |c Paulo D. Cordaro, François Treves |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [1995] | |
264 | 4 | |c © 1995 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 136 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) | ||
520 | |a In the first two chapters of this book, the reader will find a complete and systematic exposition of the theory of hyperfunctions on totally real submanifolds of multidimensional complex space, in particular of hyperfunction theory in real space. The book provides precise definitions of the hypo-analytic wave-front set and of the Fourier-Bros-Iagolnitzer transform of a hyperfunction. These are used to prove a very general version of the famed Theorem of the Edge of the Wedge. The last two chapters define the hyperfunction solutions on a general (smooth) hypo-analytic manifold, of which particular examples are the real analytic manifolds and the embedded CR manifolds. The main results here are the invariance of the spaces of hyperfunction solutions and the transversal smoothness of every hyperfunction solution. From this follows the uniqueness of solutions in the Cauchy problem with initial data on a maximally real submanifold, and the fact that the support of any solution is the union of orbits of the structure | ||
546 | |a In English | ||
650 | 4 | |a Hyperfunctions | |
650 | 4 | |a Submanifolds | |
650 | 0 | 7 | |a Hyperfunktion |0 (DE-588)4161056-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Untermannigfaltigkeit |0 (DE-588)4128503-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Untermannigfaltigkeit |0 (DE-588)4128503-7 |D s |
689 | 0 | 1 | |a Hyperfunktion |0 (DE-588)4161056-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Trèves, François |d 1930- |0 (DE-588)107758652 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-02992-4 |
830 | 0 | |a Annals of Mathematics Studies |v number 136 |w (DE-604)BV040389493 |9 136 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400882564?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124744 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498617221120 |
---|---|
any_adam_object | |
author | Cordaro, Paulo Domingos Trèves, François 1930- |
author_GND | (DE-588)1158473125 (DE-588)107758652 |
author_facet | Cordaro, Paulo Domingos Trèves, François 1930- |
author_role | aut aut |
author_sort | Cordaro, Paulo Domingos |
author_variant | p d c pd pdc f t ft |
building | Verbundindex |
bvnumber | BV043712516 |
classification_rvk | SK 350 SK 370 SK 780 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400882564 (OCoLC)1165548155 (DE-599)BVBBV043712516 |
dewey-full | 515/.782 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.782 |
dewey-search | 515/.782 |
dewey-sort | 3515 3782 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400882564 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03108nmm a2200541 cb4500</leader><controlfield tag="001">BV043712516</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200324 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400882564</subfield><subfield code="9">978-1-4008-8256-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400882564</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400882564</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165548155</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712516</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.782</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cordaro, Paulo Domingos</subfield><subfield code="0">(DE-588)1158473125</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperfunctions on hypo-analytic manifolds</subfield><subfield code="c">Paulo D. Cordaro, François Treves</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[1995]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the first two chapters of this book, the reader will find a complete and systematic exposition of the theory of hyperfunctions on totally real submanifolds of multidimensional complex space, in particular of hyperfunction theory in real space. The book provides precise definitions of the hypo-analytic wave-front set and of the Fourier-Bros-Iagolnitzer transform of a hyperfunction. These are used to prove a very general version of the famed Theorem of the Edge of the Wedge. The last two chapters define the hyperfunction solutions on a general (smooth) hypo-analytic manifold, of which particular examples are the real analytic manifolds and the embedded CR manifolds. The main results here are the invariance of the spaces of hyperfunction solutions and the transversal smoothness of every hyperfunction solution. From this follows the uniqueness of solutions in the Cauchy problem with initial data on a maximally real submanifold, and the fact that the support of any solution is the union of orbits of the structure</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperfunctions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Submanifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperfunktion</subfield><subfield code="0">(DE-588)4161056-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Untermannigfaltigkeit</subfield><subfield code="0">(DE-588)4128503-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Untermannigfaltigkeit</subfield><subfield code="0">(DE-588)4128503-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hyperfunktion</subfield><subfield code="0">(DE-588)4161056-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trèves, François</subfield><subfield code="d">1930-</subfield><subfield code="0">(DE-588)107758652</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-02992-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 136</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">136</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400882564?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124744</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712516 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400882564 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124744 |
oclc_num | 1165548155 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Cordaro, Paulo Domingos (DE-588)1158473125 aut Hyperfunctions on hypo-analytic manifolds Paulo D. Cordaro, François Treves Princeton, NJ Princeton University Press [1995] © 1995 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 136 Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) In the first two chapters of this book, the reader will find a complete and systematic exposition of the theory of hyperfunctions on totally real submanifolds of multidimensional complex space, in particular of hyperfunction theory in real space. The book provides precise definitions of the hypo-analytic wave-front set and of the Fourier-Bros-Iagolnitzer transform of a hyperfunction. These are used to prove a very general version of the famed Theorem of the Edge of the Wedge. The last two chapters define the hyperfunction solutions on a general (smooth) hypo-analytic manifold, of which particular examples are the real analytic manifolds and the embedded CR manifolds. The main results here are the invariance of the spaces of hyperfunction solutions and the transversal smoothness of every hyperfunction solution. From this follows the uniqueness of solutions in the Cauchy problem with initial data on a maximally real submanifold, and the fact that the support of any solution is the union of orbits of the structure In English Hyperfunctions Submanifolds Hyperfunktion (DE-588)4161056-8 gnd rswk-swf Untermannigfaltigkeit (DE-588)4128503-7 gnd rswk-swf Untermannigfaltigkeit (DE-588)4128503-7 s Hyperfunktion (DE-588)4161056-8 s 1\p DE-604 Trèves, François 1930- (DE-588)107758652 aut Erscheint auch als Druck-Ausgabe 978-0-691-02992-4 Annals of Mathematics Studies number 136 (DE-604)BV040389493 136 https://doi.org/10.1515/9781400882564?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cordaro, Paulo Domingos Trèves, François 1930- Hyperfunctions on hypo-analytic manifolds Annals of Mathematics Studies Hyperfunctions Submanifolds Hyperfunktion (DE-588)4161056-8 gnd Untermannigfaltigkeit (DE-588)4128503-7 gnd |
subject_GND | (DE-588)4161056-8 (DE-588)4128503-7 |
title | Hyperfunctions on hypo-analytic manifolds |
title_auth | Hyperfunctions on hypo-analytic manifolds |
title_exact_search | Hyperfunctions on hypo-analytic manifolds |
title_full | Hyperfunctions on hypo-analytic manifolds Paulo D. Cordaro, François Treves |
title_fullStr | Hyperfunctions on hypo-analytic manifolds Paulo D. Cordaro, François Treves |
title_full_unstemmed | Hyperfunctions on hypo-analytic manifolds Paulo D. Cordaro, François Treves |
title_short | Hyperfunctions on hypo-analytic manifolds |
title_sort | hyperfunctions on hypo analytic manifolds |
topic | Hyperfunctions Submanifolds Hyperfunktion (DE-588)4161056-8 gnd Untermannigfaltigkeit (DE-588)4128503-7 gnd |
topic_facet | Hyperfunctions Submanifolds Hyperfunktion Untermannigfaltigkeit |
url | https://doi.org/10.1515/9781400882564?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT cordaropaulodomingos hyperfunctionsonhypoanalyticmanifolds AT trevesfrancois hyperfunctionsonhypoanalyticmanifolds |