Temperley-Lieb recoupling theory and invariants of 3-manifolds:
This book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, hi...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[1994]
|
Schriftenreihe: | Annals of Mathematics Studies
number 134 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose. The recoupling theory is developed in a purely combinatorial and elementary manner. Calculations are based on a reformulation of the Kirillov-Reshetikhin shadow world, leading to expressions for all the invariants in terms of state summations on 2-cell complexes. Extensive tables of the invariants are included. Manifolds in these tables are recognized by surgery presentations and by means of 3-gems (graph encoded 3-manifolds) in an approach pioneered by Sostenes Lins. The appendices include information about gems, examples of distinct manifolds with the same invariants, and applications to the Turaev-Viro invariant and to the Crane-Yetter invariant of 4-manifolds |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400882533 |
DOI: | 10.1515/9781400882533 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712513 | ||
003 | DE-604 | ||
005 | 20200324 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1994 |||| o||u| ||||||eng d | ||
020 | |a 9781400882533 |9 978-1-4008-8253-3 | ||
024 | 7 | |a 10.1515/9781400882533 |2 doi | |
035 | |a (ZDB-23-DGG)9781400882533 | ||
035 | |a (OCoLC)1165461662 | ||
035 | |a (DE-599)BVBBV043712513 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 514/.224 |2 23 | |
100 | 1 | |a Kauffman, Louis H. |d 1945- |0 (DE-588)134212614 |4 aut | |
245 | 1 | 0 | |a Temperley-Lieb recoupling theory and invariants of 3-manifolds |c Louis H. Kauffman, Sostenes Lins |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [1994] | |
264 | 4 | |c © 1994 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 134 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) | ||
520 | |a This book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose. The recoupling theory is developed in a purely combinatorial and elementary manner. Calculations are based on a reformulation of the Kirillov-Reshetikhin shadow world, leading to expressions for all the invariants in terms of state summations on 2-cell complexes. Extensive tables of the invariants are included. Manifolds in these tables are recognized by surgery presentations and by means of 3-gems (graph encoded 3-manifolds) in an approach pioneered by Sostenes Lins. The appendices include information about gems, examples of distinct manifolds with the same invariants, and applications to the Turaev-Viro invariant and to the Crane-Yetter invariant of 4-manifolds | ||
546 | |a In English | ||
650 | 4 | |a Invariants | |
650 | 4 | |a Knot theory | |
650 | 4 | |a Three-manifolds (Topology) | |
650 | 0 | 7 | |a Knotentheorie |0 (DE-588)4164318-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dimension 3 |0 (DE-588)4321722-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Invariante |0 (DE-588)4128781-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Knoten |g Mathematik |0 (DE-588)4164314-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Dimension 3 |0 (DE-588)4321722-9 |D s |
689 | 0 | 2 | |a Knoten |g Mathematik |0 (DE-588)4164314-8 |D s |
689 | 0 | 3 | |a Invariante |0 (DE-588)4128781-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Knotentheorie |0 (DE-588)4164318-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Lins, Sóstenes |d 20. Jht. |0 (DE-588)1089221649 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-03640-3 |
830 | 0 | |a Annals of Mathematics Studies |v number 134 |w (DE-604)BV040389493 |9 134 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400882533?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124741 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498608832512 |
---|---|
any_adam_object | |
author | Kauffman, Louis H. 1945- Lins, Sóstenes 20. Jht |
author_GND | (DE-588)134212614 (DE-588)1089221649 |
author_facet | Kauffman, Louis H. 1945- Lins, Sóstenes 20. Jht |
author_role | aut aut |
author_sort | Kauffman, Louis H. 1945- |
author_variant | l h k lh lhk s l sl |
building | Verbundindex |
bvnumber | BV043712513 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400882533 (OCoLC)1165461662 (DE-599)BVBBV043712513 |
dewey-full | 514/.224 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.224 |
dewey-search | 514/.224 |
dewey-sort | 3514 3224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400882533 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03712nmm a2200613 cb4500</leader><controlfield tag="001">BV043712513</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200324 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400882533</subfield><subfield code="9">978-1-4008-8253-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400882533</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400882533</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165461662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712513</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.224</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kauffman, Louis H.</subfield><subfield code="d">1945-</subfield><subfield code="0">(DE-588)134212614</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Temperley-Lieb recoupling theory and invariants of 3-manifolds</subfield><subfield code="c">Louis H. Kauffman, Sostenes Lins</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[1994]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 134</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose. The recoupling theory is developed in a purely combinatorial and elementary manner. Calculations are based on a reformulation of the Kirillov-Reshetikhin shadow world, leading to expressions for all the invariants in terms of state summations on 2-cell complexes. Extensive tables of the invariants are included. Manifolds in these tables are recognized by surgery presentations and by means of 3-gems (graph encoded 3-manifolds) in an approach pioneered by Sostenes Lins. The appendices include information about gems, examples of distinct manifolds with the same invariants, and applications to the Turaev-Viro invariant and to the Crane-Yetter invariant of 4-manifolds</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knot theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-manifolds (Topology)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knotentheorie</subfield><subfield code="0">(DE-588)4164318-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knoten</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4164314-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Knoten</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4164314-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Knotentheorie</subfield><subfield code="0">(DE-588)4164318-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lins, Sóstenes</subfield><subfield code="d">20. Jht.</subfield><subfield code="0">(DE-588)1089221649</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-03640-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 134</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">134</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400882533?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124741</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712513 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400882533 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124741 |
oclc_num | 1165461662 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Kauffman, Louis H. 1945- (DE-588)134212614 aut Temperley-Lieb recoupling theory and invariants of 3-manifolds Louis H. Kauffman, Sostenes Lins Princeton, NJ Princeton University Press [1994] © 1994 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 134 Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) This book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose. The recoupling theory is developed in a purely combinatorial and elementary manner. Calculations are based on a reformulation of the Kirillov-Reshetikhin shadow world, leading to expressions for all the invariants in terms of state summations on 2-cell complexes. Extensive tables of the invariants are included. Manifolds in these tables are recognized by surgery presentations and by means of 3-gems (graph encoded 3-manifolds) in an approach pioneered by Sostenes Lins. The appendices include information about gems, examples of distinct manifolds with the same invariants, and applications to the Turaev-Viro invariant and to the Crane-Yetter invariant of 4-manifolds In English Invariants Knot theory Three-manifolds (Topology) Knotentheorie (DE-588)4164318-5 gnd rswk-swf Dimension 3 (DE-588)4321722-9 gnd rswk-swf Invariante (DE-588)4128781-2 gnd rswk-swf Knoten Mathematik (DE-588)4164314-8 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 s Dimension 3 (DE-588)4321722-9 s Knoten Mathematik (DE-588)4164314-8 s Invariante (DE-588)4128781-2 s 1\p DE-604 Knotentheorie (DE-588)4164318-5 s 2\p DE-604 Lins, Sóstenes 20. Jht. (DE-588)1089221649 aut Erscheint auch als Druck-Ausgabe 978-0-691-03640-3 Annals of Mathematics Studies number 134 (DE-604)BV040389493 134 https://doi.org/10.1515/9781400882533?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kauffman, Louis H. 1945- Lins, Sóstenes 20. Jht Temperley-Lieb recoupling theory and invariants of 3-manifolds Annals of Mathematics Studies Invariants Knot theory Three-manifolds (Topology) Knotentheorie (DE-588)4164318-5 gnd Dimension 3 (DE-588)4321722-9 gnd Invariante (DE-588)4128781-2 gnd Knoten Mathematik (DE-588)4164314-8 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
subject_GND | (DE-588)4164318-5 (DE-588)4321722-9 (DE-588)4128781-2 (DE-588)4164314-8 (DE-588)4037379-4 |
title | Temperley-Lieb recoupling theory and invariants of 3-manifolds |
title_auth | Temperley-Lieb recoupling theory and invariants of 3-manifolds |
title_exact_search | Temperley-Lieb recoupling theory and invariants of 3-manifolds |
title_full | Temperley-Lieb recoupling theory and invariants of 3-manifolds Louis H. Kauffman, Sostenes Lins |
title_fullStr | Temperley-Lieb recoupling theory and invariants of 3-manifolds Louis H. Kauffman, Sostenes Lins |
title_full_unstemmed | Temperley-Lieb recoupling theory and invariants of 3-manifolds Louis H. Kauffman, Sostenes Lins |
title_short | Temperley-Lieb recoupling theory and invariants of 3-manifolds |
title_sort | temperley lieb recoupling theory and invariants of 3 manifolds |
topic | Invariants Knot theory Three-manifolds (Topology) Knotentheorie (DE-588)4164318-5 gnd Dimension 3 (DE-588)4321722-9 gnd Invariante (DE-588)4128781-2 gnd Knoten Mathematik (DE-588)4164314-8 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
topic_facet | Invariants Knot theory Three-manifolds (Topology) Knotentheorie Dimension 3 Invariante Knoten Mathematik Mannigfaltigkeit |
url | https://doi.org/10.1515/9781400882533?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT kauffmanlouish temperleyliebrecouplingtheoryandinvariantsof3manifolds AT linssostenes temperleyliebrecouplingtheoryandinvariantsof3manifolds |