Commensurabilities among lattices in PU (1,n):
The first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n-variables. These are treated as an (n+1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n+3 tuples of di...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[1993]
|
Schriftenreihe: | Annals of Mathematics Studies
number 132 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n-variables. These are treated as an (n+1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n+3 tuples of distinct points on the projective line P modulo, the diagonal section of Auto P=m. For n=1, the characterization may be regarded as a generalization of Riemann's classical theorem characterizing hypergeometric functions by their exponents at three singular points. This characterization permits the authors to compare monodromy groups corresponding to different parameters and to prove commensurability modulo inner automorphisms of PU(1,n). The book includes an investigation of elliptic and parabolic monodromy groups, as well as hyperbolic monodromy groups. The former play a role in the proof that a surprising number of lattices in PU(1,2) constructed as the fundamental groups of compact complex surfaces with constant holomorphic curvature are in fact conjugate to projective monodromy groups of hypergeometric functions. The characterization of hypergeometric-like functions by their exponents at the divisors "at infinity" permits one to prove generalizations in n-variables of the Kummer identities for n-1 involving quadratic and cubic changes of the variable |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400882519 |
DOI: | 10.1515/9781400882519 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712511 | ||
003 | DE-604 | ||
005 | 20200324 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1993 |||| o||u| ||||||eng d | ||
020 | |a 9781400882519 |9 978-1-4008-8251-9 | ||
024 | 7 | |a 10.1515/9781400882519 |2 doi | |
035 | |a (ZDB-23-DGG)9781400882519 | ||
035 | |a (OCoLC)1165522856 | ||
035 | |a (DE-599)BVBBV043712511 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 515/.25 |2 22 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Deligne, Pierre |d 1944- |0 (DE-588)10785533X |4 aut | |
245 | 1 | 0 | |a Commensurabilities among lattices in PU (1,n) |c Pierre Deligne, G. Daniel Mostow |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [1993] | |
264 | 4 | |c © 1993 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 132 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) | ||
520 | |a The first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n-variables. These are treated as an (n+1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n+3 tuples of distinct points on the projective line P modulo, the diagonal section of Auto P=m. For n=1, the characterization may be regarded as a generalization of Riemann's classical theorem characterizing hypergeometric functions by their exponents at three singular points. This characterization permits the authors to compare monodromy groups corresponding to different parameters and to prove commensurability modulo inner automorphisms of PU(1,n). The book includes an investigation of elliptic and parabolic monodromy groups, as well as hyperbolic monodromy groups. The former play a role in the proof that a surprising number of lattices in PU(1,2) constructed as the fundamental groups of compact complex surfaces with constant holomorphic curvature are in fact conjugate to projective monodromy groups of hypergeometric functions. The characterization of hypergeometric-like functions by their exponents at the divisors "at infinity" permits one to prove generalizations in n-variables of the Kummer identities for n-1 involving quadratic and cubic changes of the variable | ||
546 | |a In English | ||
650 | 4 | |a Hypergeometric functions | |
650 | 4 | |a Lattice theory | |
650 | 4 | |a Monodromy groups | |
650 | 0 | 7 | |a Verbandstheorie |0 (DE-588)4127072-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gittertheorie |0 (DE-588)4157394-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hypergeometrische Reihe |0 (DE-588)4161061-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Monodromiegruppe |0 (DE-588)4194644-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hypergeometrische Reihe |0 (DE-588)4161061-1 |D s |
689 | 0 | 1 | |a Monodromiegruppe |0 (DE-588)4194644-3 |D s |
689 | 0 | 2 | |a Verbandstheorie |0 (DE-588)4127072-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Gittertheorie |0 (DE-588)4157394-8 |D s |
689 | 1 | 1 | |a Monodromiegruppe |0 (DE-588)4194644-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Mostow, George D. |d 1923- |0 (DE-588)1081049502 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0-691-03385-4 |
830 | 0 | |a Annals of Mathematics Studies |v number 132 |w (DE-604)BV040389493 |9 132 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400882519?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124739 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498616172544 |
---|---|
any_adam_object | |
author | Deligne, Pierre 1944- Mostow, George D. 1923- |
author_GND | (DE-588)10785533X (DE-588)1081049502 |
author_facet | Deligne, Pierre 1944- Mostow, George D. 1923- |
author_role | aut aut |
author_sort | Deligne, Pierre 1944- |
author_variant | p d pd g d m gd gdm |
building | Verbundindex |
bvnumber | BV043712511 |
classification_rvk | SI 830 SK 240 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400882519 (OCoLC)1165522856 (DE-599)BVBBV043712511 |
dewey-full | 515/.25 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.25 |
dewey-search | 515/.25 |
dewey-sort | 3515 225 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400882519 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03860nmm a2200625 cb4500</leader><controlfield tag="001">BV043712511</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200324 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400882519</subfield><subfield code="9">978-1-4008-8251-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400882519</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400882519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165522856</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712511</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.25</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deligne, Pierre</subfield><subfield code="d">1944-</subfield><subfield code="0">(DE-588)10785533X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Commensurabilities among lattices in PU (1,n)</subfield><subfield code="c">Pierre Deligne, G. Daniel Mostow</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[1993]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 132</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n-variables. These are treated as an (n+1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n+3 tuples of distinct points on the projective line P modulo, the diagonal section of Auto P=m. For n=1, the characterization may be regarded as a generalization of Riemann's classical theorem characterizing hypergeometric functions by their exponents at three singular points. This characterization permits the authors to compare monodromy groups corresponding to different parameters and to prove commensurability modulo inner automorphisms of PU(1,n). The book includes an investigation of elliptic and parabolic monodromy groups, as well as hyperbolic monodromy groups. The former play a role in the proof that a surprising number of lattices in PU(1,2) constructed as the fundamental groups of compact complex surfaces with constant holomorphic curvature are in fact conjugate to projective monodromy groups of hypergeometric functions. The characterization of hypergeometric-like functions by their exponents at the divisors "at infinity" permits one to prove generalizations in n-variables of the Kummer identities for n-1 involving quadratic and cubic changes of the variable</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypergeometric functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lattice theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monodromy groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verbandstheorie</subfield><subfield code="0">(DE-588)4127072-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gittertheorie</subfield><subfield code="0">(DE-588)4157394-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monodromiegruppe</subfield><subfield code="0">(DE-588)4194644-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Monodromiegruppe</subfield><subfield code="0">(DE-588)4194644-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Verbandstheorie</subfield><subfield code="0">(DE-588)4127072-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gittertheorie</subfield><subfield code="0">(DE-588)4157394-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Monodromiegruppe</subfield><subfield code="0">(DE-588)4194644-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mostow, George D.</subfield><subfield code="d">1923-</subfield><subfield code="0">(DE-588)1081049502</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0-691-03385-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 132</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">132</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400882519?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124739</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712511 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400882519 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124739 |
oclc_num | 1165522856 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Deligne, Pierre 1944- (DE-588)10785533X aut Commensurabilities among lattices in PU (1,n) Pierre Deligne, G. Daniel Mostow Princeton, NJ Princeton University Press [1993] © 1993 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 132 Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) The first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n-variables. These are treated as an (n+1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n+3 tuples of distinct points on the projective line P modulo, the diagonal section of Auto P=m. For n=1, the characterization may be regarded as a generalization of Riemann's classical theorem characterizing hypergeometric functions by their exponents at three singular points. This characterization permits the authors to compare monodromy groups corresponding to different parameters and to prove commensurability modulo inner automorphisms of PU(1,n). The book includes an investigation of elliptic and parabolic monodromy groups, as well as hyperbolic monodromy groups. The former play a role in the proof that a surprising number of lattices in PU(1,2) constructed as the fundamental groups of compact complex surfaces with constant holomorphic curvature are in fact conjugate to projective monodromy groups of hypergeometric functions. The characterization of hypergeometric-like functions by their exponents at the divisors "at infinity" permits one to prove generalizations in n-variables of the Kummer identities for n-1 involving quadratic and cubic changes of the variable In English Hypergeometric functions Lattice theory Monodromy groups Verbandstheorie (DE-588)4127072-1 gnd rswk-swf Gittertheorie (DE-588)4157394-8 gnd rswk-swf Hypergeometrische Reihe (DE-588)4161061-1 gnd rswk-swf Monodromiegruppe (DE-588)4194644-3 gnd rswk-swf Hypergeometrische Reihe (DE-588)4161061-1 s Monodromiegruppe (DE-588)4194644-3 s Verbandstheorie (DE-588)4127072-1 s 1\p DE-604 Gittertheorie (DE-588)4157394-8 s 2\p DE-604 Mostow, George D. 1923- (DE-588)1081049502 aut Erscheint auch als Druck-Ausgabe 0-691-03385-4 Annals of Mathematics Studies number 132 (DE-604)BV040389493 132 https://doi.org/10.1515/9781400882519?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Deligne, Pierre 1944- Mostow, George D. 1923- Commensurabilities among lattices in PU (1,n) Annals of Mathematics Studies Hypergeometric functions Lattice theory Monodromy groups Verbandstheorie (DE-588)4127072-1 gnd Gittertheorie (DE-588)4157394-8 gnd Hypergeometrische Reihe (DE-588)4161061-1 gnd Monodromiegruppe (DE-588)4194644-3 gnd |
subject_GND | (DE-588)4127072-1 (DE-588)4157394-8 (DE-588)4161061-1 (DE-588)4194644-3 |
title | Commensurabilities among lattices in PU (1,n) |
title_auth | Commensurabilities among lattices in PU (1,n) |
title_exact_search | Commensurabilities among lattices in PU (1,n) |
title_full | Commensurabilities among lattices in PU (1,n) Pierre Deligne, G. Daniel Mostow |
title_fullStr | Commensurabilities among lattices in PU (1,n) Pierre Deligne, G. Daniel Mostow |
title_full_unstemmed | Commensurabilities among lattices in PU (1,n) Pierre Deligne, G. Daniel Mostow |
title_short | Commensurabilities among lattices in PU (1,n) |
title_sort | commensurabilities among lattices in pu 1 n |
topic | Hypergeometric functions Lattice theory Monodromy groups Verbandstheorie (DE-588)4127072-1 gnd Gittertheorie (DE-588)4157394-8 gnd Hypergeometrische Reihe (DE-588)4161061-1 gnd Monodromiegruppe (DE-588)4194644-3 gnd |
topic_facet | Hypergeometric functions Lattice theory Monodromy groups Verbandstheorie Gittertheorie Hypergeometrische Reihe Monodromiegruppe |
url | https://doi.org/10.1515/9781400882519?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT delignepierre commensurabilitiesamonglatticesinpu1n AT mostowgeorged commensurabilitiesamonglatticesinpu1n |