Nilpotence and periodicity in stable homotopy theory:
Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten ye...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[1992]
|
Schriftenreihe: | Annals of Mathematics Studies
number 128 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400882489 |
DOI: | 10.1515/9781400882489 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712508 | ||
003 | DE-604 | ||
005 | 20200320 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1992 |||| o||u| ||||||eng d | ||
020 | |a 9781400882489 |9 978-1-4008-8248-9 | ||
024 | 7 | |a 10.1515/9781400882489 |2 doi | |
035 | |a (ZDB-23-DGG)9781400882489 | ||
035 | |a (OCoLC)1165443385 | ||
035 | |a (DE-599)BVBBV043712508 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 514/.24 |2 22 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
100 | 1 | |a Ravenel, Douglas C. |4 aut | |
245 | 1 | 0 | |a Nilpotence and periodicity in stable homotopy theory |c Douglas C. Ravenel |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [1992] | |
264 | 4 | |c © 1992 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 128 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) | ||
520 | |a Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group | ||
546 | |a In English | ||
650 | 4 | |a Homotopy theory | |
650 | 0 | 7 | |a Homotopietheorie |0 (DE-588)4128142-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stabile Homotopiegruppe |0 (DE-588)4234506-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stabile Homotopiegruppe |0 (DE-588)4234506-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Homotopietheorie |0 (DE-588)4128142-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0-691-08792-X |
830 | 0 | |a Annals of Mathematics Studies |v number 128 |w (DE-604)BV040389493 |9 128 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400882489?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124736 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498589958144 |
---|---|
any_adam_object | |
author | Ravenel, Douglas C. |
author_facet | Ravenel, Douglas C. |
author_role | aut |
author_sort | Ravenel, Douglas C. |
author_variant | d c r dc dcr |
building | Verbundindex |
bvnumber | BV043712508 |
classification_rvk | SI 830 SK 300 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400882489 (OCoLC)1165443385 (DE-599)BVBBV043712508 |
dewey-full | 514/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.24 |
dewey-search | 514/.24 |
dewey-sort | 3514 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400882489 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03225nmm a2200529 cb4500</leader><controlfield tag="001">BV043712508</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200320 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400882489</subfield><subfield code="9">978-1-4008-8248-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400882489</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400882489</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165443385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712508</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.24</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ravenel, Douglas C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nilpotence and periodicity in stable homotopy theory</subfield><subfield code="c">Douglas C. Ravenel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[1992]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 128</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stabile Homotopiegruppe</subfield><subfield code="0">(DE-588)4234506-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stabile Homotopiegruppe</subfield><subfield code="0">(DE-588)4234506-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0-691-08792-X</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 128</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">128</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400882489?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124736</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712508 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400882489 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124736 |
oclc_num | 1165443385 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Ravenel, Douglas C. aut Nilpotence and periodicity in stable homotopy theory Douglas C. Ravenel Princeton, NJ Princeton University Press [1992] © 1992 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 128 Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group In English Homotopy theory Homotopietheorie (DE-588)4128142-1 gnd rswk-swf Stabile Homotopiegruppe (DE-588)4234506-6 gnd rswk-swf Stabile Homotopiegruppe (DE-588)4234506-6 s 1\p DE-604 Homotopietheorie (DE-588)4128142-1 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 0-691-08792-X Annals of Mathematics Studies number 128 (DE-604)BV040389493 128 https://doi.org/10.1515/9781400882489?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ravenel, Douglas C. Nilpotence and periodicity in stable homotopy theory Annals of Mathematics Studies Homotopy theory Homotopietheorie (DE-588)4128142-1 gnd Stabile Homotopiegruppe (DE-588)4234506-6 gnd |
subject_GND | (DE-588)4128142-1 (DE-588)4234506-6 |
title | Nilpotence and periodicity in stable homotopy theory |
title_auth | Nilpotence and periodicity in stable homotopy theory |
title_exact_search | Nilpotence and periodicity in stable homotopy theory |
title_full | Nilpotence and periodicity in stable homotopy theory Douglas C. Ravenel |
title_fullStr | Nilpotence and periodicity in stable homotopy theory Douglas C. Ravenel |
title_full_unstemmed | Nilpotence and periodicity in stable homotopy theory Douglas C. Ravenel |
title_short | Nilpotence and periodicity in stable homotopy theory |
title_sort | nilpotence and periodicity in stable homotopy theory |
topic | Homotopy theory Homotopietheorie (DE-588)4128142-1 gnd Stabile Homotopiegruppe (DE-588)4234506-6 gnd |
topic_facet | Homotopy theory Homotopietheorie Stabile Homotopiegruppe |
url | https://doi.org/10.1515/9781400882489?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT raveneldouglasc nilpotenceandperiodicityinstablehomotopytheory |