Unitary representations of reductive Lie groups:
This book is an expanded version of the Hermann Weyl Lectures given at the Institute for Advanced Study in January 1986. It outlines some of what is now known about irreducible unitary representations of real reductive groups, providing fairly complete definitions and references, and sketches (at le...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[1987]
|
Schriftenreihe: | Annals of Mathematics Studies
number 118 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is an expanded version of the Hermann Weyl Lectures given at the Institute for Advanced Study in January 1986. It outlines some of what is now known about irreducible unitary representations of real reductive groups, providing fairly complete definitions and references, and sketches (at least) of most proofs. The first half of the book is devoted to the three more or less understood constructions of such representations: parabolic induction, complementary series, and cohomological parabolic induction. This culminates in the description of all irreducible unitary representation of the general linear groups. For other groups, one expects to need a new construction, giving "unipotent representations." The latter half of the book explains the evidence for that expectation and suggests a partial definition of unipotent representations |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400882380 |
DOI: | 10.1515/9781400882380 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712498 | ||
003 | DE-604 | ||
005 | 20200320 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1987 |||| o||u| ||||||eng d | ||
020 | |a 9781400882380 |9 978-1-4008-8238-0 | ||
024 | 7 | |a 10.1515/9781400882380 |2 doi | |
035 | |a (ZDB-23-DGG)9781400882380 | ||
035 | |a (OCoLC)1165603840 | ||
035 | |a (DE-599)BVBBV043712498 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 512/.55 |2 19eng | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Vogan, David A. |d 1954- |0 (DE-588)172435285 |4 aut | |
245 | 1 | 0 | |a Unitary representations of reductive Lie groups |c David A. Vogan, Jr. |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [1987] | |
264 | 4 | |c © 1987 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 118 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) | ||
520 | |a This book is an expanded version of the Hermann Weyl Lectures given at the Institute for Advanced Study in January 1986. It outlines some of what is now known about irreducible unitary representations of real reductive groups, providing fairly complete definitions and references, and sketches (at least) of most proofs. The first half of the book is devoted to the three more or less understood constructions of such representations: parabolic induction, complementary series, and cohomological parabolic induction. This culminates in the description of all irreducible unitary representation of the general linear groups. For other groups, one expects to need a new construction, giving "unipotent representations." The latter half of the book explains the evidence for that expectation and suggests a partial definition of unipotent representations | ||
546 | |a In English | ||
650 | 4 | |a Lie groups | |
650 | 4 | |a Representations of Lie groups | |
650 | 0 | 7 | |a Reduktive Lie-Gruppe |0 (DE-588)4277842-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unitäre Darstellung |0 (DE-588)4186906-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reduktive Lie-Gruppe |0 (DE-588)4277842-6 |D s |
689 | 0 | 1 | |a Unitäre Darstellung |0 (DE-588)4186906-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Reduktive Lie-Gruppe |0 (DE-588)4277842-6 |D s |
689 | 1 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-08482-4 |
830 | 0 | |a Annals of Mathematics Studies |v number 118 |w (DE-604)BV040389493 |9 118 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400882380?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124726 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498571083776 |
---|---|
any_adam_object | |
author | Vogan, David A. 1954- |
author_GND | (DE-588)172435285 |
author_facet | Vogan, David A. 1954- |
author_role | aut |
author_sort | Vogan, David A. 1954- |
author_variant | d a v da dav |
building | Verbundindex |
bvnumber | BV043712498 |
classification_rvk | SI 830 SK 340 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400882380 (OCoLC)1165603840 (DE-599)BVBBV043712498 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400882380 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03139nmm a2200577 cb4500</leader><controlfield tag="001">BV043712498</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200320 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400882380</subfield><subfield code="9">978-1-4008-8238-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400882380</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400882380</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165603840</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712498</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vogan, David A.</subfield><subfield code="d">1954-</subfield><subfield code="0">(DE-588)172435285</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unitary representations of reductive Lie groups</subfield><subfield code="c">David A. Vogan, Jr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[1987]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 118</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is an expanded version of the Hermann Weyl Lectures given at the Institute for Advanced Study in January 1986. It outlines some of what is now known about irreducible unitary representations of real reductive groups, providing fairly complete definitions and references, and sketches (at least) of most proofs. The first half of the book is devoted to the three more or less understood constructions of such representations: parabolic induction, complementary series, and cohomological parabolic induction. This culminates in the description of all irreducible unitary representation of the general linear groups. For other groups, one expects to need a new construction, giving "unipotent representations." The latter half of the book explains the evidence for that expectation and suggests a partial definition of unipotent representations</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of Lie groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reduktive Lie-Gruppe</subfield><subfield code="0">(DE-588)4277842-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unitäre Darstellung</subfield><subfield code="0">(DE-588)4186906-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reduktive Lie-Gruppe</subfield><subfield code="0">(DE-588)4277842-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Unitäre Darstellung</subfield><subfield code="0">(DE-588)4186906-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Reduktive Lie-Gruppe</subfield><subfield code="0">(DE-588)4277842-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-08482-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 118</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">118</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400882380?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124726</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712498 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400882380 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124726 |
oclc_num | 1165603840 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Vogan, David A. 1954- (DE-588)172435285 aut Unitary representations of reductive Lie groups David A. Vogan, Jr. Princeton, NJ Princeton University Press [1987] © 1987 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 118 Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) This book is an expanded version of the Hermann Weyl Lectures given at the Institute for Advanced Study in January 1986. It outlines some of what is now known about irreducible unitary representations of real reductive groups, providing fairly complete definitions and references, and sketches (at least) of most proofs. The first half of the book is devoted to the three more or less understood constructions of such representations: parabolic induction, complementary series, and cohomological parabolic induction. This culminates in the description of all irreducible unitary representation of the general linear groups. For other groups, one expects to need a new construction, giving "unipotent representations." The latter half of the book explains the evidence for that expectation and suggests a partial definition of unipotent representations In English Lie groups Representations of Lie groups Reduktive Lie-Gruppe (DE-588)4277842-6 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Unitäre Darstellung (DE-588)4186906-0 gnd rswk-swf Reduktive Lie-Gruppe (DE-588)4277842-6 s Unitäre Darstellung (DE-588)4186906-0 s 1\p DE-604 Darstellungstheorie (DE-588)4148816-7 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 978-0-691-08482-4 Annals of Mathematics Studies number 118 (DE-604)BV040389493 118 https://doi.org/10.1515/9781400882380?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Vogan, David A. 1954- Unitary representations of reductive Lie groups Annals of Mathematics Studies Lie groups Representations of Lie groups Reduktive Lie-Gruppe (DE-588)4277842-6 gnd Darstellungstheorie (DE-588)4148816-7 gnd Unitäre Darstellung (DE-588)4186906-0 gnd |
subject_GND | (DE-588)4277842-6 (DE-588)4148816-7 (DE-588)4186906-0 |
title | Unitary representations of reductive Lie groups |
title_auth | Unitary representations of reductive Lie groups |
title_exact_search | Unitary representations of reductive Lie groups |
title_full | Unitary representations of reductive Lie groups David A. Vogan, Jr. |
title_fullStr | Unitary representations of reductive Lie groups David A. Vogan, Jr. |
title_full_unstemmed | Unitary representations of reductive Lie groups David A. Vogan, Jr. |
title_short | Unitary representations of reductive Lie groups |
title_sort | unitary representations of reductive lie groups |
topic | Lie groups Representations of Lie groups Reduktive Lie-Gruppe (DE-588)4277842-6 gnd Darstellungstheorie (DE-588)4148816-7 gnd Unitäre Darstellung (DE-588)4186906-0 gnd |
topic_facet | Lie groups Representations of Lie groups Reduktive Lie-Gruppe Darstellungstheorie Unitäre Darstellung |
url | https://doi.org/10.1515/9781400882380?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT vogandavida unitaryrepresentationsofreductiveliegroups |