Gauss sums, Kloosterman sums, and monodromy groups:
The study of exponential sums over finite fields, begun by Gauss nearly two centuries ago, has been completely transformed in recent years by advances in algebraic geometry, culminating in Deligne's work on the Weil Conjectures. It now appears as a very attractive mixture of algebraic geometry,...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[1988]
|
Schriftenreihe: | Annals of Mathematics Studies
number 116 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The study of exponential sums over finite fields, begun by Gauss nearly two centuries ago, has been completely transformed in recent years by advances in algebraic geometry, culminating in Deligne's work on the Weil Conjectures. It now appears as a very attractive mixture of algebraic geometry, representation theory, and the sheaf-theoretic incarnations of such standard constructions of classical analysis as convolution and Fourier transform. The book is simultaneously an account of some of these ideas, techniques, and results, and an account of their application to concrete equidistribution questions concerning Kloosterman sums and Gauss sums |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400882120 |
DOI: | 10.1515/9781400882120 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712472 | ||
003 | DE-604 | ||
005 | 20200320 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1988 |||| o||u| ||||||eng d | ||
020 | |a 9781400882120 |9 978-1-4008-8212-0 | ||
024 | 7 | |a 10.1515/9781400882120 |2 doi | |
035 | |a (ZDB-23-DGG)9781400882120 | ||
035 | |a (OCoLC)1165465371 | ||
035 | |a (DE-599)BVBBV043712472 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 512/.7 |2 23 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Katz, Nicholas M. |d 1943- |0 (DE-588)141265558 |4 aut | |
245 | 1 | 0 | |a Gauss sums, Kloosterman sums, and monodromy groups |c Nicholas M. Katz |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [1988] | |
264 | 4 | |c © 1988 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 116 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) | ||
520 | |a The study of exponential sums over finite fields, begun by Gauss nearly two centuries ago, has been completely transformed in recent years by advances in algebraic geometry, culminating in Deligne's work on the Weil Conjectures. It now appears as a very attractive mixture of algebraic geometry, representation theory, and the sheaf-theoretic incarnations of such standard constructions of classical analysis as convolution and Fourier transform. The book is simultaneously an account of some of these ideas, techniques, and results, and an account of their application to concrete equidistribution questions concerning Kloosterman sums and Gauss sums | ||
546 | |a In English | ||
650 | 4 | |a Gaussian sums | |
650 | 4 | |a Homology theory | |
650 | 4 | |a Kloosterman sums | |
650 | 4 | |a Monodromy groups | |
650 | 0 | 7 | |a Gauß-Summe |0 (DE-588)4156109-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Monodromiegruppe |0 (DE-588)4194644-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kloosterman-Summe |0 (DE-588)4309220-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kloosterman-Summe |0 (DE-588)4309220-2 |D s |
689 | 0 | 1 | |a Monodromiegruppe |0 (DE-588)4194644-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Gauß-Summe |0 (DE-588)4156109-0 |D s |
689 | 1 | 1 | |a Monodromiegruppe |0 (DE-588)4194644-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0-691-08432-7 |
830 | 0 | |a Annals of Mathematics Studies |v number 116 |w (DE-604)BV040389493 |9 116 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400882120?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124700 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498535432192 |
---|---|
any_adam_object | |
author | Katz, Nicholas M. 1943- |
author_GND | (DE-588)141265558 |
author_facet | Katz, Nicholas M. 1943- |
author_role | aut |
author_sort | Katz, Nicholas M. 1943- |
author_variant | n m k nm nmk |
building | Verbundindex |
bvnumber | BV043712472 |
classification_rvk | SI 830 SK 240 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400882120 (OCoLC)1165465371 (DE-599)BVBBV043712472 |
dewey-full | 512/.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.7 |
dewey-search | 512/.7 |
dewey-sort | 3512 17 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400882120 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02954nmm a2200601 cb4500</leader><controlfield tag="001">BV043712472</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200320 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400882120</subfield><subfield code="9">978-1-4008-8212-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400882120</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400882120</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165465371</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712472</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Katz, Nicholas M.</subfield><subfield code="d">1943-</subfield><subfield code="0">(DE-588)141265558</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gauss sums, Kloosterman sums, and monodromy groups</subfield><subfield code="c">Nicholas M. Katz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[1988]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 116</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The study of exponential sums over finite fields, begun by Gauss nearly two centuries ago, has been completely transformed in recent years by advances in algebraic geometry, culminating in Deligne's work on the Weil Conjectures. It now appears as a very attractive mixture of algebraic geometry, representation theory, and the sheaf-theoretic incarnations of such standard constructions of classical analysis as convolution and Fourier transform. The book is simultaneously an account of some of these ideas, techniques, and results, and an account of their application to concrete equidistribution questions concerning Kloosterman sums and Gauss sums</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaussian sums</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kloosterman sums</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monodromy groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gauß-Summe</subfield><subfield code="0">(DE-588)4156109-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monodromiegruppe</subfield><subfield code="0">(DE-588)4194644-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kloosterman-Summe</subfield><subfield code="0">(DE-588)4309220-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kloosterman-Summe</subfield><subfield code="0">(DE-588)4309220-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Monodromiegruppe</subfield><subfield code="0">(DE-588)4194644-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gauß-Summe</subfield><subfield code="0">(DE-588)4156109-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Monodromiegruppe</subfield><subfield code="0">(DE-588)4194644-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0-691-08432-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 116</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">116</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400882120?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124700</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712472 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400882120 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124700 |
oclc_num | 1165465371 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Katz, Nicholas M. 1943- (DE-588)141265558 aut Gauss sums, Kloosterman sums, and monodromy groups Nicholas M. Katz Princeton, NJ Princeton University Press [1988] © 1988 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 116 Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) The study of exponential sums over finite fields, begun by Gauss nearly two centuries ago, has been completely transformed in recent years by advances in algebraic geometry, culminating in Deligne's work on the Weil Conjectures. It now appears as a very attractive mixture of algebraic geometry, representation theory, and the sheaf-theoretic incarnations of such standard constructions of classical analysis as convolution and Fourier transform. The book is simultaneously an account of some of these ideas, techniques, and results, and an account of their application to concrete equidistribution questions concerning Kloosterman sums and Gauss sums In English Gaussian sums Homology theory Kloosterman sums Monodromy groups Gauß-Summe (DE-588)4156109-0 gnd rswk-swf Monodromiegruppe (DE-588)4194644-3 gnd rswk-swf Kloosterman-Summe (DE-588)4309220-2 gnd rswk-swf Kloosterman-Summe (DE-588)4309220-2 s Monodromiegruppe (DE-588)4194644-3 s 1\p DE-604 Gauß-Summe (DE-588)4156109-0 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 0-691-08432-7 Annals of Mathematics Studies number 116 (DE-604)BV040389493 116 https://doi.org/10.1515/9781400882120?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Katz, Nicholas M. 1943- Gauss sums, Kloosterman sums, and monodromy groups Annals of Mathematics Studies Gaussian sums Homology theory Kloosterman sums Monodromy groups Gauß-Summe (DE-588)4156109-0 gnd Monodromiegruppe (DE-588)4194644-3 gnd Kloosterman-Summe (DE-588)4309220-2 gnd |
subject_GND | (DE-588)4156109-0 (DE-588)4194644-3 (DE-588)4309220-2 |
title | Gauss sums, Kloosterman sums, and monodromy groups |
title_auth | Gauss sums, Kloosterman sums, and monodromy groups |
title_exact_search | Gauss sums, Kloosterman sums, and monodromy groups |
title_full | Gauss sums, Kloosterman sums, and monodromy groups Nicholas M. Katz |
title_fullStr | Gauss sums, Kloosterman sums, and monodromy groups Nicholas M. Katz |
title_full_unstemmed | Gauss sums, Kloosterman sums, and monodromy groups Nicholas M. Katz |
title_short | Gauss sums, Kloosterman sums, and monodromy groups |
title_sort | gauss sums kloosterman sums and monodromy groups |
topic | Gaussian sums Homology theory Kloosterman sums Monodromy groups Gauß-Summe (DE-588)4156109-0 gnd Monodromiegruppe (DE-588)4194644-3 gnd Kloosterman-Summe (DE-588)4309220-2 gnd |
topic_facet | Gaussian sums Homology theory Kloosterman sums Monodromy groups Gauß-Summe Monodromiegruppe Kloosterman-Summe |
url | https://doi.org/10.1515/9781400882120?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT katznicholasm gausssumskloostermansumsandmonodromygroups |