Three-dimensional link theory and invariants of plane curve singularities:
This book gives a new foundation for the theory of links in 3-space modeled on the modern developmentby Jaco, Shalen, Johannson, Thurston et al. of the theory of 3-manifolds. The basic construction is a method of obtaining any link by "splicing" links of the simplest kinds, namely those wh...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[1985]
|
Schriftenreihe: | Annals of Mathematics Studies
number 110 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book gives a new foundation for the theory of links in 3-space modeled on the modern developmentby Jaco, Shalen, Johannson, Thurston et al. of the theory of 3-manifolds. The basic construction is a method of obtaining any link by "splicing" links of the simplest kinds, namely those whose exteriors are Seifert fibered or hyperbolic. This approach to link theory is particularly attractive since most invariants of links are additive under splicing. Specially distinguished from this viewpoint is the class of links, none of whose splice components is hyperbolic. It includes all links constructed by cabling and connected sums, in particular all links of singularities of complex plane curves. One of the main contributions of this monograph is the calculation of invariants of these classes of links, such as the Alexander polynomials, monodromy, and Seifert forms |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed May 30, 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400881925 9780691083810 |
DOI: | 10.1515/9781400881925 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712452 | ||
003 | DE-604 | ||
005 | 20200320 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1985 |||| o||u| ||||||eng d | ||
020 | |a 9781400881925 |9 978-1-4008-8192-5 | ||
020 | |a 9780691083810 |c print |9 978-0-691-08381-0 | ||
024 | 7 | |a 10.1515/9781400881925 |2 doi | |
035 | |a (ZDB-23-DGG)9781400881925 | ||
035 | |a (OCoLC)1165450586 | ||
035 | |a (DE-599)BVBBV043712452 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 514.224 |2 19eng | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
100 | 1 | |a Eisenbud, David |d 1947- |0 (DE-588)139999671 |4 aut | |
245 | 1 | 0 | |a Three-dimensional link theory and invariants of plane curve singularities |c David Eisenbud, Walter D. Neumann |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [1985] | |
264 | 4 | |c © 1985 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 110 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed May 30, 2016) | ||
520 | |a This book gives a new foundation for the theory of links in 3-space modeled on the modern developmentby Jaco, Shalen, Johannson, Thurston et al. of the theory of 3-manifolds. The basic construction is a method of obtaining any link by "splicing" links of the simplest kinds, namely those whose exteriors are Seifert fibered or hyperbolic. This approach to link theory is particularly attractive since most invariants of links are additive under splicing. Specially distinguished from this viewpoint is the class of links, none of whose splice components is hyperbolic. It includes all links constructed by cabling and connected sums, in particular all links of singularities of complex plane curves. One of the main contributions of this monograph is the calculation of invariants of these classes of links, such as the Alexander polynomials, monodromy, and Seifert forms | ||
546 | |a In English | ||
650 | 4 | |a Curves, Plane | |
650 | 4 | |a Invariants | |
650 | 4 | |a Link theory | |
650 | 4 | |a Singularities (Mathematics) | |
650 | 0 | 7 | |a Kante |0 (DE-588)4220665-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ebene Kurve |0 (DE-588)4150970-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dimension 3 |0 (DE-588)4321722-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verschlingung |0 (DE-588)4191540-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Invariante |0 (DE-588)4128781-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Dimension 3 |0 (DE-588)4321722-9 |D s |
689 | 0 | 2 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Ebene Kurve |0 (DE-588)4150970-5 |D s |
689 | 1 | 1 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |D s |
689 | 1 | 2 | |a Invariante |0 (DE-588)4128781-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Verschlingung |0 (DE-588)4191540-9 |D s |
689 | 2 | 1 | |a Dimension 3 |0 (DE-588)4321722-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Kante |0 (DE-588)4220665-0 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
700 | 1 | |a Neumann, Walter D. |d 1946- |0 (DE-588)174097956 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-08381-0 |
830 | 0 | |a Annals of Mathematics Studies |v number 110 |w (DE-604)BV040389493 |9 110 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400881925?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124680 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498492440576 |
---|---|
any_adam_object | |
author | Eisenbud, David 1947- Neumann, Walter D. 1946- |
author_GND | (DE-588)139999671 (DE-588)174097956 |
author_facet | Eisenbud, David 1947- Neumann, Walter D. 1946- |
author_role | aut aut |
author_sort | Eisenbud, David 1947- |
author_variant | d e de w d n wd wdn |
building | Verbundindex |
bvnumber | BV043712452 |
classification_rvk | SI 830 SK 300 SK 350 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400881925 (OCoLC)1165450586 (DE-599)BVBBV043712452 |
dewey-full | 514.224 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.224 |
dewey-search | 514.224 |
dewey-sort | 3514.224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400881925 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04197nmm a2200805 cb4500</leader><controlfield tag="001">BV043712452</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200320 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400881925</subfield><subfield code="9">978-1-4008-8192-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691083810</subfield><subfield code="c">print</subfield><subfield code="9">978-0-691-08381-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400881925</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400881925</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165450586</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712452</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.224</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eisenbud, David</subfield><subfield code="d">1947-</subfield><subfield code="0">(DE-588)139999671</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Three-dimensional link theory and invariants of plane curve singularities</subfield><subfield code="c">David Eisenbud, Walter D. Neumann</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[1985]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 110</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed May 30, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book gives a new foundation for the theory of links in 3-space modeled on the modern developmentby Jaco, Shalen, Johannson, Thurston et al. of the theory of 3-manifolds. The basic construction is a method of obtaining any link by "splicing" links of the simplest kinds, namely those whose exteriors are Seifert fibered or hyperbolic. This approach to link theory is particularly attractive since most invariants of links are additive under splicing. Specially distinguished from this viewpoint is the class of links, none of whose splice components is hyperbolic. It includes all links constructed by cabling and connected sums, in particular all links of singularities of complex plane curves. One of the main contributions of this monograph is the calculation of invariants of these classes of links, such as the Alexander polynomials, monodromy, and Seifert forms</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curves, Plane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Link theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singularities (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kante</subfield><subfield code="0">(DE-588)4220665-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ebene Kurve</subfield><subfield code="0">(DE-588)4150970-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verschlingung</subfield><subfield code="0">(DE-588)4191540-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Ebene Kurve</subfield><subfield code="0">(DE-588)4150970-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Verschlingung</subfield><subfield code="0">(DE-588)4191540-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Kante</subfield><subfield code="0">(DE-588)4220665-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neumann, Walter D.</subfield><subfield code="d">1946-</subfield><subfield code="0">(DE-588)174097956</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-08381-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 110</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">110</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400881925?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124680</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712452 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400881925 9780691083810 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124680 |
oclc_num | 1165450586 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Eisenbud, David 1947- (DE-588)139999671 aut Three-dimensional link theory and invariants of plane curve singularities David Eisenbud, Walter D. Neumann Princeton, NJ Princeton University Press [1985] © 1985 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 110 Description based on online resource; title from PDF title page (publisher's Web site, viewed May 30, 2016) This book gives a new foundation for the theory of links in 3-space modeled on the modern developmentby Jaco, Shalen, Johannson, Thurston et al. of the theory of 3-manifolds. The basic construction is a method of obtaining any link by "splicing" links of the simplest kinds, namely those whose exteriors are Seifert fibered or hyperbolic. This approach to link theory is particularly attractive since most invariants of links are additive under splicing. Specially distinguished from this viewpoint is the class of links, none of whose splice components is hyperbolic. It includes all links constructed by cabling and connected sums, in particular all links of singularities of complex plane curves. One of the main contributions of this monograph is the calculation of invariants of these classes of links, such as the Alexander polynomials, monodromy, and Seifert forms In English Curves, Plane Invariants Link theory Singularities (Mathematics) Kante (DE-588)4220665-0 gnd rswk-swf Ebene Kurve (DE-588)4150970-5 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Dimension 3 (DE-588)4321722-9 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Verschlingung (DE-588)4191540-9 gnd rswk-swf Invariante (DE-588)4128781-2 gnd rswk-swf Singularität Mathematik (DE-588)4077459-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 s Dimension 3 (DE-588)4321722-9 s Algebraische Geometrie (DE-588)4001161-6 s 1\p DE-604 Ebene Kurve (DE-588)4150970-5 s Singularität Mathematik (DE-588)4077459-4 s Invariante (DE-588)4128781-2 s 2\p DE-604 Verschlingung (DE-588)4191540-9 s 3\p DE-604 Kante (DE-588)4220665-0 s 4\p DE-604 Neumann, Walter D. 1946- (DE-588)174097956 aut Erscheint auch als Druck-Ausgabe 978-0-691-08381-0 Annals of Mathematics Studies number 110 (DE-604)BV040389493 110 https://doi.org/10.1515/9781400881925?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Eisenbud, David 1947- Neumann, Walter D. 1946- Three-dimensional link theory and invariants of plane curve singularities Annals of Mathematics Studies Curves, Plane Invariants Link theory Singularities (Mathematics) Kante (DE-588)4220665-0 gnd Ebene Kurve (DE-588)4150970-5 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Dimension 3 (DE-588)4321722-9 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Verschlingung (DE-588)4191540-9 gnd Invariante (DE-588)4128781-2 gnd Singularität Mathematik (DE-588)4077459-4 gnd |
subject_GND | (DE-588)4220665-0 (DE-588)4150970-5 (DE-588)4001161-6 (DE-588)4321722-9 (DE-588)4037379-4 (DE-588)4191540-9 (DE-588)4128781-2 (DE-588)4077459-4 |
title | Three-dimensional link theory and invariants of plane curve singularities |
title_auth | Three-dimensional link theory and invariants of plane curve singularities |
title_exact_search | Three-dimensional link theory and invariants of plane curve singularities |
title_full | Three-dimensional link theory and invariants of plane curve singularities David Eisenbud, Walter D. Neumann |
title_fullStr | Three-dimensional link theory and invariants of plane curve singularities David Eisenbud, Walter D. Neumann |
title_full_unstemmed | Three-dimensional link theory and invariants of plane curve singularities David Eisenbud, Walter D. Neumann |
title_short | Three-dimensional link theory and invariants of plane curve singularities |
title_sort | three dimensional link theory and invariants of plane curve singularities |
topic | Curves, Plane Invariants Link theory Singularities (Mathematics) Kante (DE-588)4220665-0 gnd Ebene Kurve (DE-588)4150970-5 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Dimension 3 (DE-588)4321722-9 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Verschlingung (DE-588)4191540-9 gnd Invariante (DE-588)4128781-2 gnd Singularität Mathematik (DE-588)4077459-4 gnd |
topic_facet | Curves, Plane Invariants Link theory Singularities (Mathematics) Kante Ebene Kurve Algebraische Geometrie Dimension 3 Mannigfaltigkeit Verschlingung Invariante Singularität Mathematik |
url | https://doi.org/10.1515/9781400881925?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT eisenbuddavid threedimensionallinktheoryandinvariantsofplanecurvesingularities AT neumannwalterd threedimensionallinktheoryandinvariantsofplanecurvesingularities |