The Equidistribution Theory of Holomorphic Curves. (AM-64):
This work is a fresh presentation of the Ahlfors-Weyl theory of holomorphic curves that takes into account some recent developments in Nevanlinna theory and several complex variables. The treatment is differential geometric throughout, and assumes no previous acquaintance with the classical theory o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
1970
|
Schriftenreihe: | Annals of Mathematics Studies
64 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This work is a fresh presentation of the Ahlfors-Weyl theory of holomorphic curves that takes into account some recent developments in Nevanlinna theory and several complex variables. The treatment is differential geometric throughout, and assumes no previous acquaintance with the classical theory of Nevanlinna. The main emphasis is on holomorphic curves defined over Riemann surfaces, which admit a harmonic exhaustion, and the main theorems of the subject are proved for such surfaces. The author discusses several directions for further research |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400881901 |
DOI: | 10.1515/9781400881901 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712450 | ||
003 | DE-604 | ||
005 | 20191211 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1970 |||| o||u| ||||||eng d | ||
020 | |a 9781400881901 |9 978-1-4008-8190-1 | ||
024 | 7 | |a 10.1515/9781400881901 |2 doi | |
035 | |a (ZDB-23-DGG)9781400881901 | ||
035 | |a (OCoLC)1165480107 | ||
035 | |a (DE-599)BVBBV043712450 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 517.5 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 780 |0 (DE-625)143255: |2 rvk | ||
100 | 1 | |a Wu, Hung-his |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Equidistribution Theory of Holomorphic Curves. (AM-64) |c Hung-His Wu |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c 1970 | |
264 | 4 | |c © 1970 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v 64 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) | ||
520 | |a This work is a fresh presentation of the Ahlfors-Weyl theory of holomorphic curves that takes into account some recent developments in Nevanlinna theory and several complex variables. The treatment is differential geometric throughout, and assumes no previous acquaintance with the classical theory of Nevanlinna. The main emphasis is on holomorphic curves defined over Riemann surfaces, which admit a harmonic exhaustion, and the main theorems of the subject are proved for such surfaces. The author discusses several directions for further research | ||
546 | |a In English | ||
650 | 4 | |a Analytic functions | |
650 | 4 | |a Functions, Meromorphic | |
650 | 4 | |a Value distribution theory | |
650 | 0 | 7 | |a Wertverteilungstheorie |0 (DE-588)4137510-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Holomorphe Kurve |0 (DE-588)4160476-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Holomorphe Kurve |0 (DE-588)4160476-3 |D s |
689 | 0 | 1 | |a Wertverteilungstheorie |0 (DE-588)4137510-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0-691-08073-9 |
830 | 0 | |a Annals of Mathematics Studies |v 64 |w (DE-604)BV040389493 |9 64 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400881901?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124678 |
Datensatz im Suchindex
_version_ | 1804176498491392000 |
---|---|
any_adam_object | |
author | Wu, Hung-his |
author_facet | Wu, Hung-his |
author_role | aut |
author_sort | Wu, Hung-his |
author_variant | h h w hhw |
building | Verbundindex |
bvnumber | BV043712450 |
classification_rvk | SI 830 SK 780 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400881901 (OCoLC)1165480107 (DE-599)BVBBV043712450 |
dewey-full | 517.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 517 - [Unassigned] |
dewey-raw | 517.5 |
dewey-search | 517.5 |
dewey-sort | 3517.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400881901 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02442nmm a2200517 cb4500</leader><controlfield tag="001">BV043712450</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191211 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1970 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400881901</subfield><subfield code="9">978-1-4008-8190-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400881901</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400881901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165480107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712450</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">517.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Hung-his</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Equidistribution Theory of Holomorphic Curves. (AM-64)</subfield><subfield code="c">Hung-His Wu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">1970</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1970</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">64</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work is a fresh presentation of the Ahlfors-Weyl theory of holomorphic curves that takes into account some recent developments in Nevanlinna theory and several complex variables. The treatment is differential geometric throughout, and assumes no previous acquaintance with the classical theory of Nevanlinna. The main emphasis is on holomorphic curves defined over Riemann surfaces, which admit a harmonic exhaustion, and the main theorems of the subject are proved for such surfaces. The author discusses several directions for further research</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, Meromorphic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Value distribution theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wertverteilungstheorie</subfield><subfield code="0">(DE-588)4137510-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphe Kurve</subfield><subfield code="0">(DE-588)4160476-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Holomorphe Kurve</subfield><subfield code="0">(DE-588)4160476-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wertverteilungstheorie</subfield><subfield code="0">(DE-588)4137510-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0-691-08073-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">64</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">64</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400881901?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124678</subfield></datafield></record></collection> |
id | DE-604.BV043712450 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400881901 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124678 |
oclc_num | 1165480107 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1970 |
publishDateSearch | 1970 |
publishDateSort | 1970 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Wu, Hung-his Verfasser aut The Equidistribution Theory of Holomorphic Curves. (AM-64) Hung-His Wu Princeton, NJ Princeton University Press 1970 © 1970 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies 64 Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) This work is a fresh presentation of the Ahlfors-Weyl theory of holomorphic curves that takes into account some recent developments in Nevanlinna theory and several complex variables. The treatment is differential geometric throughout, and assumes no previous acquaintance with the classical theory of Nevanlinna. The main emphasis is on holomorphic curves defined over Riemann surfaces, which admit a harmonic exhaustion, and the main theorems of the subject are proved for such surfaces. The author discusses several directions for further research In English Analytic functions Functions, Meromorphic Value distribution theory Wertverteilungstheorie (DE-588)4137510-5 gnd rswk-swf Holomorphe Kurve (DE-588)4160476-3 gnd rswk-swf Holomorphe Kurve (DE-588)4160476-3 s Wertverteilungstheorie (DE-588)4137510-5 s DE-604 Erscheint auch als Druck-Ausgabe 0-691-08073-9 Annals of Mathematics Studies 64 (DE-604)BV040389493 64 https://doi.org/10.1515/9781400881901?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Wu, Hung-his The Equidistribution Theory of Holomorphic Curves. (AM-64) Annals of Mathematics Studies Analytic functions Functions, Meromorphic Value distribution theory Wertverteilungstheorie (DE-588)4137510-5 gnd Holomorphe Kurve (DE-588)4160476-3 gnd |
subject_GND | (DE-588)4137510-5 (DE-588)4160476-3 |
title | The Equidistribution Theory of Holomorphic Curves. (AM-64) |
title_auth | The Equidistribution Theory of Holomorphic Curves. (AM-64) |
title_exact_search | The Equidistribution Theory of Holomorphic Curves. (AM-64) |
title_full | The Equidistribution Theory of Holomorphic Curves. (AM-64) Hung-His Wu |
title_fullStr | The Equidistribution Theory of Holomorphic Curves. (AM-64) Hung-His Wu |
title_full_unstemmed | The Equidistribution Theory of Holomorphic Curves. (AM-64) Hung-His Wu |
title_short | The Equidistribution Theory of Holomorphic Curves. (AM-64) |
title_sort | the equidistribution theory of holomorphic curves am 64 |
topic | Analytic functions Functions, Meromorphic Value distribution theory Wertverteilungstheorie (DE-588)4137510-5 gnd Holomorphe Kurve (DE-588)4160476-3 gnd |
topic_facet | Analytic functions Functions, Meromorphic Value distribution theory Wertverteilungstheorie Holomorphe Kurve |
url | https://doi.org/10.1515/9781400881901?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT wuhunghis theequidistributiontheoryofholomorphiccurvesam64 |