Invariant forms on Grassmann manifolds:
This work offers a contribution in the geometric form of the theory of several complex variables. Since complex Grassmann manifolds serve as classifying spaces of complex vector bundles, the cohomology structure of a complex Grassmann manifold is of importance for the construction of Chern classes o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[1977]
|
Schriftenreihe: | Annals of Mathematics Studies
number 89 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This work offers a contribution in the geometric form of the theory of several complex variables. Since complex Grassmann manifolds serve as classifying spaces of complex vector bundles, the cohomology structure of a complex Grassmann manifold is of importance for the construction of Chern classes of complex vector bundles. The cohomology ring of a Grassmannian is therefore of interest in topology, differential geometry, algebraic geometry, and complex analysis. Wilhelm Stoll treats certain aspects of the complex analysis point of view. This work originated with questions in value distribution theory. Here analytic sets and differential forms rather than the corresponding homology and cohomology classes are considered. On the Grassmann manifold, the cohomology ring is isomorphic to the ring of differential forms invariant under the unitary group, and each cohomology class is determined by a family of analytic sets |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400881888 |
DOI: | 10.1515/9781400881888 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712448 | ||
003 | DE-604 | ||
005 | 20200317 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1977 |||| o||u| ||||||eng d | ||
020 | |a 9781400881888 |9 978-1-4008-8188-8 | ||
024 | 7 | |a 10.1515/9781400881888 |2 doi | |
035 | |a (ZDB-23-DGG)9781400881888 | ||
035 | |a (OCoLC)1165505652 | ||
035 | |a (DE-599)BVBBV043712448 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 514/.224 |2 23 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Stoll, Wilhelm |d 1923-2010 |0 (DE-588)1082553328 |4 aut | |
245 | 1 | 0 | |a Invariant forms on Grassmann manifolds |c Wilhelm Stoll |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [1977] | |
264 | 4 | |c © 1977 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 89 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) | ||
520 | |a This work offers a contribution in the geometric form of the theory of several complex variables. Since complex Grassmann manifolds serve as classifying spaces of complex vector bundles, the cohomology structure of a complex Grassmann manifold is of importance for the construction of Chern classes of complex vector bundles. The cohomology ring of a Grassmannian is therefore of interest in topology, differential geometry, algebraic geometry, and complex analysis. Wilhelm Stoll treats certain aspects of the complex analysis point of view. This work originated with questions in value distribution theory. Here analytic sets and differential forms rather than the corresponding homology and cohomology classes are considered. On the Grassmann manifold, the cohomology ring is isomorphic to the ring of differential forms invariant under the unitary group, and each cohomology class is determined by a family of analytic sets | ||
546 | |a In English | ||
650 | 4 | |a Differential forms | |
650 | 4 | |a Grassmann manifolds | |
650 | 4 | |a Invariants | |
650 | 0 | 7 | |a Invariante |0 (DE-588)4128781-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graßmann-Mannigfaltigkeit |0 (DE-588)4158085-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Graßmann-Mannigfaltigkeit |0 (DE-588)4158085-0 |D s |
689 | 0 | 1 | |a Invariante |0 (DE-588)4128781-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0-691-08198-0 |
830 | 0 | |a Annals of Mathematics Studies |v number 89 |w (DE-604)BV040389493 |9 89 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400881888?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124676 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498483003392 |
---|---|
any_adam_object | |
author | Stoll, Wilhelm 1923-2010 |
author_GND | (DE-588)1082553328 |
author_facet | Stoll, Wilhelm 1923-2010 |
author_role | aut |
author_sort | Stoll, Wilhelm 1923-2010 |
author_variant | w s ws |
building | Verbundindex |
bvnumber | BV043712448 |
classification_rvk | SI 830 SK 370 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400881888 (OCoLC)1165505652 (DE-599)BVBBV043712448 |
dewey-full | 514/.224 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.224 |
dewey-search | 514/.224 |
dewey-sort | 3514 3224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400881888 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02911nmm a2200529 cb4500</leader><controlfield tag="001">BV043712448</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200317 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1977 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400881888</subfield><subfield code="9">978-1-4008-8188-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400881888</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400881888</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165505652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712448</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.224</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stoll, Wilhelm</subfield><subfield code="d">1923-2010</subfield><subfield code="0">(DE-588)1082553328</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Invariant forms on Grassmann manifolds</subfield><subfield code="c">Wilhelm Stoll</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[1977]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1977</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 89</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work offers a contribution in the geometric form of the theory of several complex variables. Since complex Grassmann manifolds serve as classifying spaces of complex vector bundles, the cohomology structure of a complex Grassmann manifold is of importance for the construction of Chern classes of complex vector bundles. The cohomology ring of a Grassmannian is therefore of interest in topology, differential geometry, algebraic geometry, and complex analysis. Wilhelm Stoll treats certain aspects of the complex analysis point of view. This work originated with questions in value distribution theory. Here analytic sets and differential forms rather than the corresponding homology and cohomology classes are considered. On the Grassmann manifold, the cohomology ring is isomorphic to the ring of differential forms invariant under the unitary group, and each cohomology class is determined by a family of analytic sets</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential forms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grassmann manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariants</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graßmann-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4158085-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Graßmann-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4158085-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0-691-08198-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 89</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">89</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400881888?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124676</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712448 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400881888 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124676 |
oclc_num | 1165505652 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1977 |
publishDateSearch | 1977 |
publishDateSort | 1977 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Stoll, Wilhelm 1923-2010 (DE-588)1082553328 aut Invariant forms on Grassmann manifolds Wilhelm Stoll Princeton, NJ Princeton University Press [1977] © 1977 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 89 Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) This work offers a contribution in the geometric form of the theory of several complex variables. Since complex Grassmann manifolds serve as classifying spaces of complex vector bundles, the cohomology structure of a complex Grassmann manifold is of importance for the construction of Chern classes of complex vector bundles. The cohomology ring of a Grassmannian is therefore of interest in topology, differential geometry, algebraic geometry, and complex analysis. Wilhelm Stoll treats certain aspects of the complex analysis point of view. This work originated with questions in value distribution theory. Here analytic sets and differential forms rather than the corresponding homology and cohomology classes are considered. On the Grassmann manifold, the cohomology ring is isomorphic to the ring of differential forms invariant under the unitary group, and each cohomology class is determined by a family of analytic sets In English Differential forms Grassmann manifolds Invariants Invariante (DE-588)4128781-2 gnd rswk-swf Graßmann-Mannigfaltigkeit (DE-588)4158085-0 gnd rswk-swf Graßmann-Mannigfaltigkeit (DE-588)4158085-0 s Invariante (DE-588)4128781-2 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 0-691-08198-0 Annals of Mathematics Studies number 89 (DE-604)BV040389493 89 https://doi.org/10.1515/9781400881888?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Stoll, Wilhelm 1923-2010 Invariant forms on Grassmann manifolds Annals of Mathematics Studies Differential forms Grassmann manifolds Invariants Invariante (DE-588)4128781-2 gnd Graßmann-Mannigfaltigkeit (DE-588)4158085-0 gnd |
subject_GND | (DE-588)4128781-2 (DE-588)4158085-0 |
title | Invariant forms on Grassmann manifolds |
title_auth | Invariant forms on Grassmann manifolds |
title_exact_search | Invariant forms on Grassmann manifolds |
title_full | Invariant forms on Grassmann manifolds Wilhelm Stoll |
title_fullStr | Invariant forms on Grassmann manifolds Wilhelm Stoll |
title_full_unstemmed | Invariant forms on Grassmann manifolds Wilhelm Stoll |
title_short | Invariant forms on Grassmann manifolds |
title_sort | invariant forms on grassmann manifolds |
topic | Differential forms Grassmann manifolds Invariants Invariante (DE-588)4128781-2 gnd Graßmann-Mannigfaltigkeit (DE-588)4158085-0 gnd |
topic_facet | Differential forms Grassmann manifolds Invariants Invariante Graßmann-Mannigfaltigkeit |
url | https://doi.org/10.1515/9781400881888?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT stollwilhelm invariantformsongrassmannmanifolds |