Topics in harmonic analysis related to the Littlewood-Paley theory:
This work deals with an extension of the classical Littlewood-Paley theory in the context of symmetric diffusion semigroups. In this general setting there are applications to a variety of problems, such as those arising in the study of the expansions coming from second order elliptic operators. A re...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
1970
|
Schriftenreihe: | Annals of Mathematics Studies
63 |
Schlagworte: | |
Online-Zugang: | URL des Erstveröffentlichers |
Zusammenfassung: | This work deals with an extension of the classical Littlewood-Paley theory in the context of symmetric diffusion semigroups. In this general setting there are applications to a variety of problems, such as those arising in the study of the expansions coming from second order elliptic operators. A review of background material in Lie groups and martingale theory is included to make the monograph more accessible to the student |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed May 30, 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400881871 9780691080673 |
DOI: | 10.1515/9781400881871 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712447 | ||
003 | DE-604 | ||
005 | 20191211 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1970 |||| o||u| ||||||eng d | ||
020 | |a 9781400881871 |9 978-1-4008-8187-1 | ||
020 | |a 9780691080673 |c print |9 978-0-691-08067-3 | ||
024 | 7 | |a 10.1515/9781400881871 |2 doi | |
035 | |a (ZDB-23-DGG)9781400881871 | ||
035 | |a (OCoLC)1165541914 | ||
035 | |a (DE-599)BVBBV043712447 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 515.2433 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
100 | 1 | |a Stein, Elias M. |d 1931-2018 |0 (DE-588)119278596 |4 aut | |
245 | 1 | 0 | |a Topics in harmonic analysis related to the Littlewood-Paley theory |c Elias M. Stein |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c 1970 | |
264 | 4 | |c © 1970 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v 63 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed May 30, 2016) | ||
520 | |a This work deals with an extension of the classical Littlewood-Paley theory in the context of symmetric diffusion semigroups. In this general setting there are applications to a variety of problems, such as those arising in the study of the expansions coming from second order elliptic operators. A review of background material in Lie groups and martingale theory is included to make the monograph more accessible to the student | ||
546 | |a In English | ||
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Littlewood-Paley theory | |
650 | 4 | |a Semigroups | |
650 | 0 | 7 | |a Littlewood-Paley-Theorem |0 (DE-588)4352642-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Littlewood-Paley-Theorem |0 (DE-588)4352642-1 |D s |
689 | 0 | 1 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-08067-3 |
830 | 0 | |a Annals of Mathematics Studies |v 63 |w (DE-604)BV040389493 |9 63 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400881871?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124675 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498478809088 |
---|---|
any_adam_object | |
author | Stein, Elias M. 1931-2018 |
author_GND | (DE-588)119278596 |
author_facet | Stein, Elias M. 1931-2018 |
author_role | aut |
author_sort | Stein, Elias M. 1931-2018 |
author_variant | e m s em ems |
building | Verbundindex |
bvnumber | BV043712447 |
classification_rvk | SI 830 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400881871 (OCoLC)1165541914 (DE-599)BVBBV043712447 |
dewey-full | 515.2433 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.2433 |
dewey-search | 515.2433 |
dewey-sort | 3515.2433 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400881871 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02478nmm a2200541 cb4500</leader><controlfield tag="001">BV043712447</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191211 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1970 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400881871</subfield><subfield code="9">978-1-4008-8187-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691080673</subfield><subfield code="c">print</subfield><subfield code="9">978-0-691-08067-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400881871</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400881871</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165541914</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712447</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.2433</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stein, Elias M.</subfield><subfield code="d">1931-2018</subfield><subfield code="0">(DE-588)119278596</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topics in harmonic analysis related to the Littlewood-Paley theory</subfield><subfield code="c">Elias M. Stein</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">1970</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1970</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">63</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed May 30, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work deals with an extension of the classical Littlewood-Paley theory in the context of symmetric diffusion semigroups. In this general setting there are applications to a variety of problems, such as those arising in the study of the expansions coming from second order elliptic operators. A review of background material in Lie groups and martingale theory is included to make the monograph more accessible to the student</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Littlewood-Paley theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semigroups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Littlewood-Paley-Theorem</subfield><subfield code="0">(DE-588)4352642-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Littlewood-Paley-Theorem</subfield><subfield code="0">(DE-588)4352642-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-08067-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">63</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">63</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400881871?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124675</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712447 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400881871 9780691080673 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124675 |
oclc_num | 1165541914 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1970 |
publishDateSearch | 1970 |
publishDateSort | 1970 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Stein, Elias M. 1931-2018 (DE-588)119278596 aut Topics in harmonic analysis related to the Littlewood-Paley theory Elias M. Stein Princeton, NJ Princeton University Press 1970 © 1970 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies 63 Description based on online resource; title from PDF title page (publisher's Web site, viewed May 30, 2016) This work deals with an extension of the classical Littlewood-Paley theory in the context of symmetric diffusion semigroups. In this general setting there are applications to a variety of problems, such as those arising in the study of the expansions coming from second order elliptic operators. A review of background material in Lie groups and martingale theory is included to make the monograph more accessible to the student In English Harmonic analysis Lie groups Littlewood-Paley theory Semigroups Littlewood-Paley-Theorem (DE-588)4352642-1 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Littlewood-Paley-Theorem (DE-588)4352642-1 s Harmonische Analyse (DE-588)4023453-8 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 978-0-691-08067-3 Annals of Mathematics Studies 63 (DE-604)BV040389493 63 https://doi.org/10.1515/9781400881871?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Stein, Elias M. 1931-2018 Topics in harmonic analysis related to the Littlewood-Paley theory Annals of Mathematics Studies Harmonic analysis Lie groups Littlewood-Paley theory Semigroups Littlewood-Paley-Theorem (DE-588)4352642-1 gnd Harmonische Analyse (DE-588)4023453-8 gnd |
subject_GND | (DE-588)4352642-1 (DE-588)4023453-8 |
title | Topics in harmonic analysis related to the Littlewood-Paley theory |
title_auth | Topics in harmonic analysis related to the Littlewood-Paley theory |
title_exact_search | Topics in harmonic analysis related to the Littlewood-Paley theory |
title_full | Topics in harmonic analysis related to the Littlewood-Paley theory Elias M. Stein |
title_fullStr | Topics in harmonic analysis related to the Littlewood-Paley theory Elias M. Stein |
title_full_unstemmed | Topics in harmonic analysis related to the Littlewood-Paley theory Elias M. Stein |
title_short | Topics in harmonic analysis related to the Littlewood-Paley theory |
title_sort | topics in harmonic analysis related to the littlewood paley theory |
topic | Harmonic analysis Lie groups Littlewood-Paley theory Semigroups Littlewood-Paley-Theorem (DE-588)4352642-1 gnd Harmonische Analyse (DE-588)4023453-8 gnd |
topic_facet | Harmonic analysis Lie groups Littlewood-Paley theory Semigroups Littlewood-Paley-Theorem Harmonische Analyse |
url | https://doi.org/10.1515/9781400881871?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT steineliasm topicsinharmonicanalysisrelatedtothelittlewoodpaleytheory |