Characters of reductive groups over a finite field:
This book presents a classification of all (complex) irreducible representations of a reductive group with connected centre, over a finite field. To achieve this, the author uses etale intersection cohomology, and detailed information on representations of Weyl groups
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[1984]
|
Schriftenreihe: | Annals of Mathematics Studies
number 107 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book presents a classification of all (complex) irreducible representations of a reductive group with connected centre, over a finite field. To achieve this, the author uses etale intersection cohomology, and detailed information on representations of Weyl groups |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400881772 |
DOI: | 10.1515/9781400881772 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712437 | ||
003 | DE-604 | ||
005 | 20200317 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1984 |||| o||u| ||||||eng d | ||
020 | |a 9781400881772 |9 978-1-4008-8177-2 | ||
024 | 7 | |a 10.1515/9781400881772 |2 doi | |
035 | |a (ZDB-23-DGG)9781400881772 | ||
035 | |a (OCoLC)1165462071 | ||
035 | |a (DE-599)BVBBV043712437 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 512/.2 |2 22 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Lusztig, George |d 1946- |0 (DE-588)118813730 |4 aut | |
245 | 1 | 0 | |a Characters of reductive groups over a finite field |c George Lusztig |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [1984] | |
264 | 4 | |c © 1984 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 107 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) | ||
520 | |a This book presents a classification of all (complex) irreducible representations of a reductive group with connected centre, over a finite field. To achieve this, the author uses etale intersection cohomology, and detailed information on representations of Weyl groups | ||
546 | |a In English | ||
650 | 4 | |a Characters of groups | |
650 | 4 | |a Finite fields (Algebra) | |
650 | 4 | |a Finite groups | |
650 | 0 | 7 | |a Galois-Feld |0 (DE-588)4155896-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Charakter |g Gruppentheorie |0 (DE-588)4158438-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |D s |
689 | 0 | 1 | |a Charakter |g Gruppentheorie |0 (DE-588)4158438-7 |D s |
689 | 0 | 2 | |a Galois-Feld |0 (DE-588)4155896-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0-691-08350-9 |
830 | 0 | |a Annals of Mathematics Studies |v number 107 |w (DE-604)BV040389493 |9 107 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400881772?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124665 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498456788992 |
---|---|
any_adam_object | |
author | Lusztig, George 1946- |
author_GND | (DE-588)118813730 |
author_facet | Lusztig, George 1946- |
author_role | aut |
author_sort | Lusztig, George 1946- |
author_variant | g l gl |
building | Verbundindex |
bvnumber | BV043712437 |
classification_rvk | SI 830 SK 260 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400881772 (OCoLC)1165462071 (DE-599)BVBBV043712437 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400881772 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02393nmm a2200553 cb4500</leader><controlfield tag="001">BV043712437</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200317 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1984 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400881772</subfield><subfield code="9">978-1-4008-8177-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400881772</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400881772</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165462071</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712437</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lusztig, George</subfield><subfield code="d">1946-</subfield><subfield code="0">(DE-588)118813730</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characters of reductive groups over a finite field</subfield><subfield code="c">George Lusztig</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[1984]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 107</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents a classification of all (complex) irreducible representations of a reductive group with connected centre, over a finite field. To achieve this, the author uses etale intersection cohomology, and detailed information on representations of Weyl groups</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characters of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite fields (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Galois-Feld</subfield><subfield code="0">(DE-588)4155896-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Charakter</subfield><subfield code="g">Gruppentheorie</subfield><subfield code="0">(DE-588)4158438-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Charakter</subfield><subfield code="g">Gruppentheorie</subfield><subfield code="0">(DE-588)4158438-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Galois-Feld</subfield><subfield code="0">(DE-588)4155896-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0-691-08350-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 107</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">107</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400881772?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124665</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712437 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400881772 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124665 |
oclc_num | 1165462071 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Lusztig, George 1946- (DE-588)118813730 aut Characters of reductive groups over a finite field George Lusztig Princeton, NJ Princeton University Press [1984] © 1984 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 107 Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) This book presents a classification of all (complex) irreducible representations of a reductive group with connected centre, over a finite field. To achieve this, the author uses etale intersection cohomology, and detailed information on representations of Weyl groups In English Characters of groups Finite fields (Algebra) Finite groups Galois-Feld (DE-588)4155896-0 gnd rswk-swf Charakter Gruppentheorie (DE-588)4158438-7 gnd rswk-swf Reduktive Gruppe (DE-588)4177313-5 gnd rswk-swf Reduktive Gruppe (DE-588)4177313-5 s Charakter Gruppentheorie (DE-588)4158438-7 s Galois-Feld (DE-588)4155896-0 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 0-691-08350-9 Annals of Mathematics Studies number 107 (DE-604)BV040389493 107 https://doi.org/10.1515/9781400881772?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lusztig, George 1946- Characters of reductive groups over a finite field Annals of Mathematics Studies Characters of groups Finite fields (Algebra) Finite groups Galois-Feld (DE-588)4155896-0 gnd Charakter Gruppentheorie (DE-588)4158438-7 gnd Reduktive Gruppe (DE-588)4177313-5 gnd |
subject_GND | (DE-588)4155896-0 (DE-588)4158438-7 (DE-588)4177313-5 |
title | Characters of reductive groups over a finite field |
title_auth | Characters of reductive groups over a finite field |
title_exact_search | Characters of reductive groups over a finite field |
title_full | Characters of reductive groups over a finite field George Lusztig |
title_fullStr | Characters of reductive groups over a finite field George Lusztig |
title_full_unstemmed | Characters of reductive groups over a finite field George Lusztig |
title_short | Characters of reductive groups over a finite field |
title_sort | characters of reductive groups over a finite field |
topic | Characters of groups Finite fields (Algebra) Finite groups Galois-Feld (DE-588)4155896-0 gnd Charakter Gruppentheorie (DE-588)4158438-7 gnd Reduktive Gruppe (DE-588)4177313-5 gnd |
topic_facet | Characters of groups Finite fields (Algebra) Finite groups Galois-Feld Charakter Gruppentheorie Reduktive Gruppe |
url | https://doi.org/10.1515/9781400881772?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT lusztiggeorge charactersofreductivegroupsoverafinitefield |