Discrete series of GLn over a finite field:
In this book Professor Lusztig solves an interesting problem by entirely new methods: specifically, the use of cohomology of buildings and related complexes.The book gives an explicit construction of one distinguished member, D(V), of the discrete series of GLn (Fq), where V is the n-dimensional F-v...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
1974
|
Schriftenreihe: | Annals of Mathematics Studies
number 81 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In this book Professor Lusztig solves an interesting problem by entirely new methods: specifically, the use of cohomology of buildings and related complexes.The book gives an explicit construction of one distinguished member, D(V), of the discrete series of GLn (Fq), where V is the n-dimensional F-vector space on which GLn(Fq) acts. This is a p-adic representation; more precisely D(V) is a free module of rank (q--1) (q2—1)...(qn-1—1) over the ring of Witt vectors WF of F. In Chapter 1 the author studies the homology of partially ordered sets, and proves some vanishing theorems for the homology of some partially ordered sets associated to geometric structures. Chapter 2 is a study of the representation △ of the affine group over a finite field. In Chapter 3 D(V) is defined, and its restriction to parabolic subgroups is determined. In Chapter 4 the author computes the character of D(V), and shows how to obtain other members of the discrete series by applying Galois automorphisms to D(V). Applications are in Chapter 5. As one of the main applications of his study the author gives a precise analysis of a Brauer lifting of the standard representation of GLn(Fq) |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400881765 |
DOI: | 10.1515/9781400881765 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712436 | ||
003 | DE-604 | ||
005 | 20191220 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1974 |||| o||u| ||||||eng d | ||
020 | |a 9781400881765 |9 978-1-4008-8176-5 | ||
024 | 7 | |a 10.1515/9781400881765 |2 doi | |
035 | |a (ZDB-23-DGG)9781400881765 | ||
035 | |a (OCoLC)1165483952 | ||
035 | |a (DE-599)BVBBV043712436 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 512/.2 |2 23 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Lusztig, George |d 1946- |0 (DE-588)118813730 |4 aut | |
245 | 1 | 0 | |a Discrete series of GLn over a finite field |c George Lusztig |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c 1974 | |
264 | 4 | |c © 1974 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 81 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) | ||
520 | |a In this book Professor Lusztig solves an interesting problem by entirely new methods: specifically, the use of cohomology of buildings and related complexes.The book gives an explicit construction of one distinguished member, D(V), of the discrete series of GLn (Fq), where V is the n-dimensional F-vector space on which GLn(Fq) acts. This is a p-adic representation; more precisely D(V) is a free module of rank (q--1) (q2—1)...(qn-1—1) over the ring of Witt vectors WF of F. In Chapter 1 the author studies the homology of partially ordered sets, and proves some vanishing theorems for the homology of some partially ordered sets associated to geometric structures. Chapter 2 is a study of the representation △ of the affine group over a finite field. In Chapter 3 D(V) is defined, and its restriction to parabolic subgroups is determined. In Chapter 4 the author computes the character of D(V), and shows how to obtain other members of the discrete series by applying Galois automorphisms to D(V). Applications are in Chapter 5. As one of the main applications of his study the author gives a precise analysis of a Brauer lifting of the standard representation of GLn(Fq) | ||
546 | |a In English | ||
650 | 4 | |a Algebraic fields | |
650 | 4 | |a Linear algebraic groups | |
650 | 4 | |a Representations of groups | |
650 | 4 | |a Series | |
650 | 0 | 7 | |a Diskrete Reihe |0 (DE-588)4150181-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ordnung n |0 (DE-588)4322729-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Gruppe |0 (DE-588)4138778-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare Gruppe |0 (DE-588)4138778-8 |D s |
689 | 0 | 1 | |a Ordnung n |0 (DE-588)4322729-6 |D s |
689 | 0 | 2 | |a Diskrete Reihe |0 (DE-588)4150181-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0-691-08154-9 |
830 | 0 | |a Annals of Mathematics Studies |v number 81 |w (DE-604)BV040389493 |9 81 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400881765?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124664 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498453643264 |
---|---|
any_adam_object | |
author | Lusztig, George 1946- |
author_GND | (DE-588)118813730 |
author_facet | Lusztig, George 1946- |
author_role | aut |
author_sort | Lusztig, George 1946- |
author_variant | g l gl |
building | Verbundindex |
bvnumber | BV043712436 |
classification_rvk | SI 830 SK 260 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400881765 (OCoLC)1165483952 (DE-599)BVBBV043712436 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400881765 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03297nmm a2200565 cb4500</leader><controlfield tag="001">BV043712436</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191220 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1974 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400881765</subfield><subfield code="9">978-1-4008-8176-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400881765</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400881765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165483952</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712436</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lusztig, George</subfield><subfield code="d">1946-</subfield><subfield code="0">(DE-588)118813730</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrete series of GLn over a finite field</subfield><subfield code="c">George Lusztig</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">1974</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1974</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 81</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this book Professor Lusztig solves an interesting problem by entirely new methods: specifically, the use of cohomology of buildings and related complexes.The book gives an explicit construction of one distinguished member, D(V), of the discrete series of GLn (Fq), where V is the n-dimensional F-vector space on which GLn(Fq) acts. This is a p-adic representation; more precisely D(V) is a free module of rank (q--1) (q2—1)...(qn-1—1) over the ring of Witt vectors WF of F. In Chapter 1 the author studies the homology of partially ordered sets, and proves some vanishing theorems for the homology of some partially ordered sets associated to geometric structures. Chapter 2 is a study of the representation &#9651; of the affine group over a finite field. In Chapter 3 D(V) is defined, and its restriction to parabolic subgroups is determined. In Chapter 4 the author computes the character of D(V), and shows how to obtain other members of the discrete series by applying Galois automorphisms to D(V). Applications are in Chapter 5. As one of the main applications of his study the author gives a precise analysis of a Brauer lifting of the standard representation of GLn(Fq)</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear algebraic groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Series</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Reihe</subfield><subfield code="0">(DE-588)4150181-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ordnung n</subfield><subfield code="0">(DE-588)4322729-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Gruppe</subfield><subfield code="0">(DE-588)4138778-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Gruppe</subfield><subfield code="0">(DE-588)4138778-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ordnung n</subfield><subfield code="0">(DE-588)4322729-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Diskrete Reihe</subfield><subfield code="0">(DE-588)4150181-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0-691-08154-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 81</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">81</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400881765?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124664</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712436 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400881765 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124664 |
oclc_num | 1165483952 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1974 |
publishDateSearch | 1974 |
publishDateSort | 1974 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Lusztig, George 1946- (DE-588)118813730 aut Discrete series of GLn over a finite field George Lusztig Princeton, NJ Princeton University Press 1974 © 1974 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 81 Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) In this book Professor Lusztig solves an interesting problem by entirely new methods: specifically, the use of cohomology of buildings and related complexes.The book gives an explicit construction of one distinguished member, D(V), of the discrete series of GLn (Fq), where V is the n-dimensional F-vector space on which GLn(Fq) acts. This is a p-adic representation; more precisely D(V) is a free module of rank (q--1) (q2—1)...(qn-1—1) over the ring of Witt vectors WF of F. In Chapter 1 the author studies the homology of partially ordered sets, and proves some vanishing theorems for the homology of some partially ordered sets associated to geometric structures. Chapter 2 is a study of the representation △ of the affine group over a finite field. In Chapter 3 D(V) is defined, and its restriction to parabolic subgroups is determined. In Chapter 4 the author computes the character of D(V), and shows how to obtain other members of the discrete series by applying Galois automorphisms to D(V). Applications are in Chapter 5. As one of the main applications of his study the author gives a precise analysis of a Brauer lifting of the standard representation of GLn(Fq) In English Algebraic fields Linear algebraic groups Representations of groups Series Diskrete Reihe (DE-588)4150181-0 gnd rswk-swf Ordnung n (DE-588)4322729-6 gnd rswk-swf Lineare Gruppe (DE-588)4138778-8 gnd rswk-swf Lineare Gruppe (DE-588)4138778-8 s Ordnung n (DE-588)4322729-6 s Diskrete Reihe (DE-588)4150181-0 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 0-691-08154-9 Annals of Mathematics Studies number 81 (DE-604)BV040389493 81 https://doi.org/10.1515/9781400881765?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lusztig, George 1946- Discrete series of GLn over a finite field Annals of Mathematics Studies Algebraic fields Linear algebraic groups Representations of groups Series Diskrete Reihe (DE-588)4150181-0 gnd Ordnung n (DE-588)4322729-6 gnd Lineare Gruppe (DE-588)4138778-8 gnd |
subject_GND | (DE-588)4150181-0 (DE-588)4322729-6 (DE-588)4138778-8 |
title | Discrete series of GLn over a finite field |
title_auth | Discrete series of GLn over a finite field |
title_exact_search | Discrete series of GLn over a finite field |
title_full | Discrete series of GLn over a finite field George Lusztig |
title_fullStr | Discrete series of GLn over a finite field George Lusztig |
title_full_unstemmed | Discrete series of GLn over a finite field George Lusztig |
title_short | Discrete series of GLn over a finite field |
title_sort | discrete series of gln over a finite field |
topic | Algebraic fields Linear algebraic groups Representations of groups Series Diskrete Reihe (DE-588)4150181-0 gnd Ordnung n (DE-588)4322729-6 gnd Lineare Gruppe (DE-588)4138778-8 gnd |
topic_facet | Algebraic fields Linear algebraic groups Representations of groups Series Diskrete Reihe Ordnung n Lineare Gruppe |
url | https://doi.org/10.1515/9781400881765?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT lusztiggeorge discreteseriesofglnoverafinitefield |