Lie Equations, Vol. I: General Theory. (AM-73)
In this monograph the authors redevelop the theory systematically using two different approaches. A general mechanism for the deformation of structures on manifolds was developed by Donald Spencer ten years ago. A new version of that theory, based on the differential calculus in the analytic spaces...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2016]
|
Schriftenreihe: | Annals of Mathematics Studies
73 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In this monograph the authors redevelop the theory systematically using two different approaches. A general mechanism for the deformation of structures on manifolds was developed by Donald Spencer ten years ago. A new version of that theory, based on the differential calculus in the analytic spaces of Grothendieck, was recently given by B. Malgrange. The first approach adopts Malgrange's idea in defining jet sheaves and linear operators, although the brackets and the non-linear theory arc treated in an essentially different manner. The second approach is based on the theory of derivations, and its relationship to the first is clearly explained. The introduction describes examples of Lie equations and known integrability theorems, and gives applications of the theory to be developed in the following chapters and in the subsequent volume |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed May 30, 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400881734 9780691081113 |
DOI: | 10.1515/9781400881734 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043712433 | ||
003 | DE-604 | ||
005 | 20200603 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781400881734 |9 978-1-4008-8173-4 | ||
020 | |a 9780691081113 |c print |9 978-0-691-08111-3 | ||
024 | 7 | |a 10.1515/9781400881734 |2 doi | |
035 | |a (ZDB-23-DGG)9781400881734 | ||
035 | |a (OCoLC)1165480065 | ||
035 | |a (DE-599)BVBBV043712433 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 512/.55 |2 23 | |
100 | 1 | |a Kumpera, Antonio |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lie Equations, Vol. I |b General Theory. (AM-73) |c Antonio Kumpera, Donald Clayton Spencer |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2016] | |
264 | 4 | |c © 1973 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Annals of Mathematics Studies |v 73 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed May 30, 2016) | ||
520 | |a In this monograph the authors redevelop the theory systematically using two different approaches. A general mechanism for the deformation of structures on manifolds was developed by Donald Spencer ten years ago. A new version of that theory, based on the differential calculus in the analytic spaces of Grothendieck, was recently given by B. Malgrange. The first approach adopts Malgrange's idea in defining jet sheaves and linear operators, although the brackets and the non-linear theory arc treated in an essentially different manner. The second approach is based on the theory of derivations, and its relationship to the first is clearly explained. The introduction describes examples of Lie equations and known integrability theorems, and gives applications of the theory to be developed in the following chapters and in the subsequent volume | ||
546 | |a In English | ||
650 | 4 | |a Differential equations | |
650 | 4 | |a Lie algebras | |
650 | 4 | |a Lie groups | |
700 | 1 | |a Spencer, Donald C. |d 1912-2001 |e Sonstige |0 (DE-588)14004812X |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400881734?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124661 |
Datensatz im Suchindex
_version_ | 1804176498459934720 |
---|---|
any_adam_object | |
author | Kumpera, Antonio |
author_GND | (DE-588)14004812X |
author_facet | Kumpera, Antonio |
author_role | aut |
author_sort | Kumpera, Antonio |
author_variant | a k ak |
building | Verbundindex |
bvnumber | BV043712433 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400881734 (OCoLC)1165480065 (DE-599)BVBBV043712433 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400881734 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02367nmm a2200433zcb4500</leader><controlfield tag="001">BV043712433</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200603 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400881734</subfield><subfield code="9">978-1-4008-8173-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691081113</subfield><subfield code="c">print</subfield><subfield code="9">978-0-691-08111-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400881734</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400881734</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165480065</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712433</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kumpera, Antonio</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie Equations, Vol. I</subfield><subfield code="b">General Theory. (AM-73)</subfield><subfield code="c">Antonio Kumpera, Donald Clayton Spencer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1973</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">73</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed May 30, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this monograph the authors redevelop the theory systematically using two different approaches. A general mechanism for the deformation of structures on manifolds was developed by Donald Spencer ten years ago. A new version of that theory, based on the differential calculus in the analytic spaces of Grothendieck, was recently given by B. Malgrange. The first approach adopts Malgrange's idea in defining jet sheaves and linear operators, although the brackets and the non-linear theory arc treated in an essentially different manner. The second approach is based on the theory of derivations, and its relationship to the first is clearly explained. The introduction describes examples of Lie equations and known integrability theorems, and gives applications of the theory to be developed in the following chapters and in the subsequent volume</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spencer, Donald C.</subfield><subfield code="d">1912-2001</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)14004812X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400881734?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124661</subfield></datafield></record></collection> |
id | DE-604.BV043712433 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400881734 9780691081113 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124661 |
oclc_num | 1165480065 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Princeton University Press |
record_format | marc |
series2 | Annals of Mathematics Studies |
spelling | Kumpera, Antonio Verfasser aut Lie Equations, Vol. I General Theory. (AM-73) Antonio Kumpera, Donald Clayton Spencer Princeton, NJ Princeton University Press [2016] © 1973 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies 73 Description based on online resource; title from PDF title page (publisher's Web site, viewed May 30, 2016) In this monograph the authors redevelop the theory systematically using two different approaches. A general mechanism for the deformation of structures on manifolds was developed by Donald Spencer ten years ago. A new version of that theory, based on the differential calculus in the analytic spaces of Grothendieck, was recently given by B. Malgrange. The first approach adopts Malgrange's idea in defining jet sheaves and linear operators, although the brackets and the non-linear theory arc treated in an essentially different manner. The second approach is based on the theory of derivations, and its relationship to the first is clearly explained. The introduction describes examples of Lie equations and known integrability theorems, and gives applications of the theory to be developed in the following chapters and in the subsequent volume In English Differential equations Lie algebras Lie groups Spencer, Donald C. 1912-2001 Sonstige (DE-588)14004812X oth https://doi.org/10.1515/9781400881734?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Kumpera, Antonio Lie Equations, Vol. I General Theory. (AM-73) Differential equations Lie algebras Lie groups |
title | Lie Equations, Vol. I General Theory. (AM-73) |
title_auth | Lie Equations, Vol. I General Theory. (AM-73) |
title_exact_search | Lie Equations, Vol. I General Theory. (AM-73) |
title_full | Lie Equations, Vol. I General Theory. (AM-73) Antonio Kumpera, Donald Clayton Spencer |
title_fullStr | Lie Equations, Vol. I General Theory. (AM-73) Antonio Kumpera, Donald Clayton Spencer |
title_full_unstemmed | Lie Equations, Vol. I General Theory. (AM-73) Antonio Kumpera, Donald Clayton Spencer |
title_short | Lie Equations, Vol. I |
title_sort | lie equations vol i general theory am 73 |
title_sub | General Theory. (AM-73) |
topic | Differential equations Lie algebras Lie groups |
topic_facet | Differential equations Lie algebras Lie groups |
url | https://doi.org/10.1515/9781400881734?locatt=mode:legacy |
work_keys_str_mv | AT kumperaantonio lieequationsvoligeneraltheoryam73 AT spencerdonaldc lieequationsvoligeneraltheoryam73 |