Smoothings of piecewise linear manifolds:
The intention of the authors is to examine the relationship between piecewise linear structure and differential structure: a relationship, they assert, that can be understood as a homotopy obstruction theory, and, hence, can be studied by using the traditional techniques of algebraic topology. Thus...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
1974
|
Schriftenreihe: | Annals of Mathematics Studies
number 80 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The intention of the authors is to examine the relationship between piecewise linear structure and differential structure: a relationship, they assert, that can be understood as a homotopy obstruction theory, and, hence, can be studied by using the traditional techniques of algebraic topology. Thus the book attacks the problem of existence and classification (up to isotopy) of differential structures compatible with a given combinatorial structure on a manifold. The problem is completely "solved" in the sense that it is reduced to standard problems of algebraic topology. The first part of the book is purely geometrical; it proves that every smoothing of the product of a manifold M and an interval is derived from an essentially unique smoothing of M. In the second part this result is used to translate the classification of smoothings into the problem of putting a linear structure on the tangent microbundle of M. This in turn is converted to the homotopy problem of classifying maps from M into a certain space PL/O. The set of equivalence classes of smoothings on M is given a natural abelian group structure |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400881680 |
DOI: | 10.1515/9781400881680 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712428 | ||
003 | DE-604 | ||
005 | 20220110 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1974 |||| o||u| ||||||eng d | ||
020 | |a 9781400881680 |9 978-1-4008-8168-0 | ||
024 | 7 | |a 10.1515/9781400881680 |2 doi | |
035 | |a (ZDB-23-DGG)9781400881680 | ||
035 | |a (OCoLC)1165548197 | ||
035 | |a (DE-599)BVBBV043712428 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 514/.224 |2 23 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a 57R10 |2 msc | ||
100 | 1 | |a Hirsch, Morris W. |d 1933- |0 (DE-588)172139120 |4 aut | |
245 | 1 | 0 | |a Smoothings of piecewise linear manifolds |c Barry Mazur, Morris W. Hirsch |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c 1974 | |
264 | 4 | |c © 1974 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 80 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) | ||
520 | |a The intention of the authors is to examine the relationship between piecewise linear structure and differential structure: a relationship, they assert, that can be understood as a homotopy obstruction theory, and, hence, can be studied by using the traditional techniques of algebraic topology. Thus the book attacks the problem of existence and classification (up to isotopy) of differential structures compatible with a given combinatorial structure on a manifold. The problem is completely "solved" in the sense that it is reduced to standard problems of algebraic topology. The first part of the book is purely geometrical; it proves that every smoothing of the product of a manifold M and an interval is derived from an essentially unique smoothing of M. In the second part this result is used to translate the classification of smoothings into the problem of putting a linear structure on the tangent microbundle of M. This in turn is converted to the homotopy problem of classifying maps from M into a certain space PL/O. The set of equivalence classes of smoothings on M is given a natural abelian group structure | ||
546 | |a In English | ||
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Piecewise linear topology | |
650 | 0 | 7 | |a Glättung |0 (DE-588)4157404-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Glättung |0 (DE-588)4157404-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Mazur, Barry |d 1937- |0 (DE-588)107715945 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0-691-08145-X |
830 | 0 | |a Annals of Mathematics Studies |v number 80 |w (DE-604)BV040389493 |9 80 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400881680?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124656 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498434768896 |
---|---|
any_adam_object | |
author | Hirsch, Morris W. 1933- Mazur, Barry 1937- |
author_GND | (DE-588)172139120 (DE-588)107715945 |
author_facet | Hirsch, Morris W. 1933- Mazur, Barry 1937- |
author_role | aut aut |
author_sort | Hirsch, Morris W. 1933- |
author_variant | m w h mw mwh b m bm |
building | Verbundindex |
bvnumber | BV043712428 |
classification_rvk | SI 830 SK 350 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400881680 (OCoLC)1165548197 (DE-599)BVBBV043712428 |
dewey-full | 514/.224 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.224 |
dewey-search | 514/.224 |
dewey-sort | 3514 3224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400881680 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03167nmm a2200541 cb4500</leader><controlfield tag="001">BV043712428</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220110 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1974 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400881680</subfield><subfield code="9">978-1-4008-8168-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400881680</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400881680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165548197</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712428</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.224</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57R10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hirsch, Morris W.</subfield><subfield code="d">1933-</subfield><subfield code="0">(DE-588)172139120</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Smoothings of piecewise linear manifolds</subfield><subfield code="c">Barry Mazur, Morris W. Hirsch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">1974</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1974</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 80</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The intention of the authors is to examine the relationship between piecewise linear structure and differential structure: a relationship, they assert, that can be understood as a homotopy obstruction theory, and, hence, can be studied by using the traditional techniques of algebraic topology. Thus the book attacks the problem of existence and classification (up to isotopy) of differential structures compatible with a given combinatorial structure on a manifold. The problem is completely "solved" in the sense that it is reduced to standard problems of algebraic topology. The first part of the book is purely geometrical; it proves that every smoothing of the product of a manifold M and an interval is derived from an essentially unique smoothing of M. In the second part this result is used to translate the classification of smoothings into the problem of putting a linear structure on the tangent microbundle of M. This in turn is converted to the homotopy problem of classifying maps from M into a certain space PL/O. The set of equivalence classes of smoothings on M is given a natural abelian group structure</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piecewise linear topology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Glättung</subfield><subfield code="0">(DE-588)4157404-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Glättung</subfield><subfield code="0">(DE-588)4157404-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mazur, Barry</subfield><subfield code="d">1937-</subfield><subfield code="0">(DE-588)107715945</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0-691-08145-X</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 80</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">80</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400881680?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124656</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712428 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400881680 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124656 |
oclc_num | 1165548197 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1974 |
publishDateSearch | 1974 |
publishDateSort | 1974 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Hirsch, Morris W. 1933- (DE-588)172139120 aut Smoothings of piecewise linear manifolds Barry Mazur, Morris W. Hirsch Princeton, NJ Princeton University Press 1974 © 1974 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 80 Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) The intention of the authors is to examine the relationship between piecewise linear structure and differential structure: a relationship, they assert, that can be understood as a homotopy obstruction theory, and, hence, can be studied by using the traditional techniques of algebraic topology. Thus the book attacks the problem of existence and classification (up to isotopy) of differential structures compatible with a given combinatorial structure on a manifold. The problem is completely "solved" in the sense that it is reduced to standard problems of algebraic topology. The first part of the book is purely geometrical; it proves that every smoothing of the product of a manifold M and an interval is derived from an essentially unique smoothing of M. In the second part this result is used to translate the classification of smoothings into the problem of putting a linear structure on the tangent microbundle of M. This in turn is converted to the homotopy problem of classifying maps from M into a certain space PL/O. The set of equivalence classes of smoothings on M is given a natural abelian group structure In English Manifolds (Mathematics) Piecewise linear topology Glättung (DE-588)4157404-7 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 s Glättung (DE-588)4157404-7 s 1\p DE-604 Mazur, Barry 1937- (DE-588)107715945 aut Erscheint auch als Druck-Ausgabe 0-691-08145-X Annals of Mathematics Studies number 80 (DE-604)BV040389493 80 https://doi.org/10.1515/9781400881680?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hirsch, Morris W. 1933- Mazur, Barry 1937- Smoothings of piecewise linear manifolds Annals of Mathematics Studies Manifolds (Mathematics) Piecewise linear topology Glättung (DE-588)4157404-7 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
subject_GND | (DE-588)4157404-7 (DE-588)4037379-4 |
title | Smoothings of piecewise linear manifolds |
title_auth | Smoothings of piecewise linear manifolds |
title_exact_search | Smoothings of piecewise linear manifolds |
title_full | Smoothings of piecewise linear manifolds Barry Mazur, Morris W. Hirsch |
title_fullStr | Smoothings of piecewise linear manifolds Barry Mazur, Morris W. Hirsch |
title_full_unstemmed | Smoothings of piecewise linear manifolds Barry Mazur, Morris W. Hirsch |
title_short | Smoothings of piecewise linear manifolds |
title_sort | smoothings of piecewise linear manifolds |
topic | Manifolds (Mathematics) Piecewise linear topology Glättung (DE-588)4157404-7 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
topic_facet | Manifolds (Mathematics) Piecewise linear topology Glättung Mannigfaltigkeit |
url | https://doi.org/10.1515/9781400881680?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT hirschmorrisw smoothingsofpiecewiselinearmanifolds AT mazurbarry smoothingsofpiecewiselinearmanifolds |