Scattering theory for automorphic functions:
The application by Fadeev and Pavlov of the Lax-Phillips scattering theory to the automorphic wave equation led Professors Lax and Phillips to reexamine this development within the framework of their theory. This volume sets forth the results of that work in the form of new or more straightforward t...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[1976]
|
Schriftenreihe: | Annals of Mathematics Studies
number 87 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The application by Fadeev and Pavlov of the Lax-Phillips scattering theory to the automorphic wave equation led Professors Lax and Phillips to reexamine this development within the framework of their theory. This volume sets forth the results of that work in the form of new or more straightforward treatments of the spectral theory of the Laplace-Beltrami operator over fundamental domains of finite area; the meromorphic character over the whole complex plane of the Eisenstein series; and the Selberg trace formula. CONTENTS: 1. Introduction. 2. An abstract scattering theory. 3. A modified theory for second order equations with an indefinite energy form. 4. The Laplace-Beltrami operator for the modular group. 5. The automorphic wave equation. 6. Incoming and outgoing subspaces for the automorphic wave equations. 7. The scattering matrix for the automorphic wave equation. 8. The general case. 9. The Selberg trace formula |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400881567 |
DOI: | 10.1515/9781400881567 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712416 | ||
003 | DE-604 | ||
005 | 20200317 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1976 |||| o||u| ||||||eng d | ||
020 | |a 9781400881567 |9 978-1-4008-8156-7 | ||
024 | 7 | |a 10.1515/9781400881567 |2 doi | |
035 | |a (ZDB-23-DGG)9781400881567 | ||
035 | |a (OCoLC)1165493268 | ||
035 | |a (DE-599)BVBBV043712416 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 515/.9 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Lax, Peter D. |d 1926- |0 (DE-588)130442437 |4 aut | |
245 | 1 | 0 | |a Scattering theory for automorphic functions |c Ralph S. Phillips, Peter D. Lax |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [1976] | |
264 | 4 | |c © 1976 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 87 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) | ||
520 | |a The application by Fadeev and Pavlov of the Lax-Phillips scattering theory to the automorphic wave equation led Professors Lax and Phillips to reexamine this development within the framework of their theory. This volume sets forth the results of that work in the form of new or more straightforward treatments of the spectral theory of the Laplace-Beltrami operator over fundamental domains of finite area; the meromorphic character over the whole complex plane of the Eisenstein series; and the Selberg trace formula. CONTENTS: 1. Introduction. 2. An abstract scattering theory. 3. A modified theory for second order equations with an indefinite energy form. 4. The Laplace-Beltrami operator for the modular group. 5. The automorphic wave equation. 6. Incoming and outgoing subspaces for the automorphic wave equations. 7. The scattering matrix for the automorphic wave equation. 8. The general case. 9. The Selberg trace formula | ||
546 | |a In English | ||
650 | 4 | |a Automorphic functions | |
650 | 4 | |a Scattering (Mathematics) | |
650 | 0 | 7 | |a Streutheorie |0 (DE-588)4183697-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automorphe Funktion |0 (DE-588)4143706-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Streutheorie |0 (DE-588)4183697-2 |D s |
689 | 0 | 1 | |a Automorphe Funktion |0 (DE-588)4143706-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Phillips, Ralph S. |d 1913-1998 |0 (DE-588)136630898 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0-691-08179-4 |
830 | 0 | |a Annals of Mathematics Studies |v number 87 |w (DE-604)BV040389493 |9 87 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400881567?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124644 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498425331712 |
---|---|
any_adam_object | |
author | Lax, Peter D. 1926- Phillips, Ralph S. 1913-1998 |
author_GND | (DE-588)130442437 (DE-588)136630898 |
author_facet | Lax, Peter D. 1926- Phillips, Ralph S. 1913-1998 |
author_role | aut aut |
author_sort | Lax, Peter D. 1926- |
author_variant | p d l pd pdl r s p rs rsp |
building | Verbundindex |
bvnumber | BV043712416 |
classification_rvk | SI 830 SK 620 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400881567 (OCoLC)1165493268 (DE-599)BVBBV043712416 |
dewey-full | 515/.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.9 |
dewey-search | 515/.9 |
dewey-sort | 3515 19 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400881567 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02966nmm a2200529 cb4500</leader><controlfield tag="001">BV043712416</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200317 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1976 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400881567</subfield><subfield code="9">978-1-4008-8156-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400881567</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400881567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165493268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712416</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.9</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lax, Peter D.</subfield><subfield code="d">1926-</subfield><subfield code="0">(DE-588)130442437</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scattering theory for automorphic functions</subfield><subfield code="c">Ralph S. Phillips, Peter D. Lax</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[1976]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1976</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 87</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The application by Fadeev and Pavlov of the Lax-Phillips scattering theory to the automorphic wave equation led Professors Lax and Phillips to reexamine this development within the framework of their theory. This volume sets forth the results of that work in the form of new or more straightforward treatments of the spectral theory of the Laplace-Beltrami operator over fundamental domains of finite area; the meromorphic character over the whole complex plane of the Eisenstein series; and the Selberg trace formula. CONTENTS: 1. Introduction. 2. An abstract scattering theory. 3. A modified theory for second order equations with an indefinite energy form. 4. The Laplace-Beltrami operator for the modular group. 5. The automorphic wave equation. 6. Incoming and outgoing subspaces for the automorphic wave equations. 7. The scattering matrix for the automorphic wave equation. 8. The general case. 9. The Selberg trace formula</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automorphic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scattering (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Streutheorie</subfield><subfield code="0">(DE-588)4183697-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automorphe Funktion</subfield><subfield code="0">(DE-588)4143706-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Streutheorie</subfield><subfield code="0">(DE-588)4183697-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Automorphe Funktion</subfield><subfield code="0">(DE-588)4143706-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Phillips, Ralph S.</subfield><subfield code="d">1913-1998</subfield><subfield code="0">(DE-588)136630898</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0-691-08179-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 87</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">87</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400881567?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124644</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712416 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400881567 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124644 |
oclc_num | 1165493268 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1976 |
publishDateSearch | 1976 |
publishDateSort | 1976 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Lax, Peter D. 1926- (DE-588)130442437 aut Scattering theory for automorphic functions Ralph S. Phillips, Peter D. Lax Princeton, NJ Princeton University Press [1976] © 1976 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 87 Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) The application by Fadeev and Pavlov of the Lax-Phillips scattering theory to the automorphic wave equation led Professors Lax and Phillips to reexamine this development within the framework of their theory. This volume sets forth the results of that work in the form of new or more straightforward treatments of the spectral theory of the Laplace-Beltrami operator over fundamental domains of finite area; the meromorphic character over the whole complex plane of the Eisenstein series; and the Selberg trace formula. CONTENTS: 1. Introduction. 2. An abstract scattering theory. 3. A modified theory for second order equations with an indefinite energy form. 4. The Laplace-Beltrami operator for the modular group. 5. The automorphic wave equation. 6. Incoming and outgoing subspaces for the automorphic wave equations. 7. The scattering matrix for the automorphic wave equation. 8. The general case. 9. The Selberg trace formula In English Automorphic functions Scattering (Mathematics) Streutheorie (DE-588)4183697-2 gnd rswk-swf Automorphe Funktion (DE-588)4143706-8 gnd rswk-swf Streutheorie (DE-588)4183697-2 s Automorphe Funktion (DE-588)4143706-8 s 1\p DE-604 Phillips, Ralph S. 1913-1998 (DE-588)136630898 aut Erscheint auch als Druck-Ausgabe 0-691-08179-4 Annals of Mathematics Studies number 87 (DE-604)BV040389493 87 https://doi.org/10.1515/9781400881567?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lax, Peter D. 1926- Phillips, Ralph S. 1913-1998 Scattering theory for automorphic functions Annals of Mathematics Studies Automorphic functions Scattering (Mathematics) Streutheorie (DE-588)4183697-2 gnd Automorphe Funktion (DE-588)4143706-8 gnd |
subject_GND | (DE-588)4183697-2 (DE-588)4143706-8 |
title | Scattering theory for automorphic functions |
title_auth | Scattering theory for automorphic functions |
title_exact_search | Scattering theory for automorphic functions |
title_full | Scattering theory for automorphic functions Ralph S. Phillips, Peter D. Lax |
title_fullStr | Scattering theory for automorphic functions Ralph S. Phillips, Peter D. Lax |
title_full_unstemmed | Scattering theory for automorphic functions Ralph S. Phillips, Peter D. Lax |
title_short | Scattering theory for automorphic functions |
title_sort | scattering theory for automorphic functions |
topic | Automorphic functions Scattering (Mathematics) Streutheorie (DE-588)4183697-2 gnd Automorphe Funktion (DE-588)4143706-8 gnd |
topic_facet | Automorphic functions Scattering (Mathematics) Streutheorie Automorphe Funktion |
url | https://doi.org/10.1515/9781400881567?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT laxpeterd scatteringtheoryforautomorphicfunctions AT phillipsralphs scatteringtheoryforautomorphicfunctions |