The spectral theory of Toeplitz operators:
The theory of Toeplitz operators has come to resemble more and more in recent years the classical theory of pseudodifferential operators. For instance, Toeplitz operators possess a symbolic calculus analogous to the usual symbolic calculus, and by symbolic means one can construct parametrices for To...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[1981]
|
Schriftenreihe: | Annals of Mathematics Studies
number 99 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The theory of Toeplitz operators has come to resemble more and more in recent years the classical theory of pseudodifferential operators. For instance, Toeplitz operators possess a symbolic calculus analogous to the usual symbolic calculus, and by symbolic means one can construct parametrices for Toeplitz operators and create new Toeplitz operators out of old ones by functional operations. If P is a self-adjoint pseudodifferential operator on a compact manifold with an elliptic symbol that is of order greater than zero, then it has a discrete spectrum. Also, it is well known that the asymptotic behavior of its eigenvalues is closely related to the behavior of the bicharacteristic flow generated by its symbol. It is natural to ask if similar results are true for Toeplitz operators. In the course of answering this question, the authors explore in depth the analogies between Toeplitz operators and pseudodifferential operators and show that both can be viewed as the "quantized" objects associated with functions on compact contact manifolds |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400881444 |
DOI: | 10.1515/9781400881444 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712404 | ||
003 | DE-604 | ||
005 | 20200603 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1981 |||| o||u| ||||||eng d | ||
020 | |a 9781400881444 |9 978-1-4008-8144-4 | ||
024 | 7 | |a 10.1515/9781400881444 |2 doi | |
035 | |a (ZDB-23-DGG)9781400881444 | ||
035 | |a (OCoLC)1165545294 | ||
035 | |a (DE-599)BVBBV043712404 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 515.7/246 |2 23 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Boutet de Monvel, Louis |d 1941-2014 |0 (DE-588)1035580349 |4 aut | |
245 | 1 | 0 | |a The spectral theory of Toeplitz operators |c L. Boutet de Monvel, Victor Guillemin |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [1981] | |
264 | 4 | |c © 1981 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 99 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) | ||
520 | |a The theory of Toeplitz operators has come to resemble more and more in recent years the classical theory of pseudodifferential operators. For instance, Toeplitz operators possess a symbolic calculus analogous to the usual symbolic calculus, and by symbolic means one can construct parametrices for Toeplitz operators and create new Toeplitz operators out of old ones by functional operations. If P is a self-adjoint pseudodifferential operator on a compact manifold with an elliptic symbol that is of order greater than zero, then it has a discrete spectrum. Also, it is well known that the asymptotic behavior of its eigenvalues is closely related to the behavior of the bicharacteristic flow generated by its symbol. It is natural to ask if similar results are true for Toeplitz operators. In the course of answering this question, the authors explore in depth the analogies between Toeplitz operators and pseudodifferential operators and show that both can be viewed as the "quantized" objects associated with functions on compact contact manifolds | ||
546 | |a In English | ||
650 | 4 | |a Spectral theory (Mathematics) | |
650 | 4 | |a Toeplitz operators | |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Toeplitz-Operator |0 (DE-588)4191521-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Toeplitz-Operator |0 (DE-588)4191521-5 |D s |
689 | 0 | 1 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Guillemin, Victor |d 1937- |0 (DE-588)12110172X |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0-691-08284-7 |
830 | 0 | |a Annals of Mathematics Studies |v number 99 |w (DE-604)BV040389493 |9 99 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400881444?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124632 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498391777280 |
---|---|
any_adam_object | |
author | Boutet de Monvel, Louis 1941-2014 Guillemin, Victor 1937- |
author_GND | (DE-588)1035580349 (DE-588)12110172X |
author_facet | Boutet de Monvel, Louis 1941-2014 Guillemin, Victor 1937- |
author_role | aut aut |
author_sort | Boutet de Monvel, Louis 1941-2014 |
author_variant | d m l b dml dmlb v g vg |
building | Verbundindex |
bvnumber | BV043712404 |
classification_rvk | SI 830 SK 620 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400881444 (OCoLC)1165545294 (DE-599)BVBBV043712404 |
dewey-full | 515.7/246 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7/246 |
dewey-search | 515.7/246 |
dewey-sort | 3515.7 3246 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400881444 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03116nmm a2200529 cb4500</leader><controlfield tag="001">BV043712404</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200603 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1981 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400881444</subfield><subfield code="9">978-1-4008-8144-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400881444</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400881444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165545294</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712404</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7/246</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boutet de Monvel, Louis</subfield><subfield code="d">1941-2014</subfield><subfield code="0">(DE-588)1035580349</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The spectral theory of Toeplitz operators</subfield><subfield code="c">L. Boutet de Monvel, Victor Guillemin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[1981]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 99</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of Toeplitz operators has come to resemble more and more in recent years the classical theory of pseudodifferential operators. For instance, Toeplitz operators possess a symbolic calculus analogous to the usual symbolic calculus, and by symbolic means one can construct parametrices for Toeplitz operators and create new Toeplitz operators out of old ones by functional operations. If P is a self-adjoint pseudodifferential operator on a compact manifold with an elliptic symbol that is of order greater than zero, then it has a discrete spectrum. Also, it is well known that the asymptotic behavior of its eigenvalues is closely related to the behavior of the bicharacteristic flow generated by its symbol. It is natural to ask if similar results are true for Toeplitz operators. In the course of answering this question, the authors explore in depth the analogies between Toeplitz operators and pseudodifferential operators and show that both can be viewed as the "quantized" objects associated with functions on compact contact manifolds</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toeplitz operators</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Toeplitz-Operator</subfield><subfield code="0">(DE-588)4191521-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Toeplitz-Operator</subfield><subfield code="0">(DE-588)4191521-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guillemin, Victor</subfield><subfield code="d">1937-</subfield><subfield code="0">(DE-588)12110172X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0-691-08284-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 99</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">99</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400881444?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124632</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712404 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400881444 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124632 |
oclc_num | 1165545294 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Boutet de Monvel, Louis 1941-2014 (DE-588)1035580349 aut The spectral theory of Toeplitz operators L. Boutet de Monvel, Victor Guillemin Princeton, NJ Princeton University Press [1981] © 1981 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 99 Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) The theory of Toeplitz operators has come to resemble more and more in recent years the classical theory of pseudodifferential operators. For instance, Toeplitz operators possess a symbolic calculus analogous to the usual symbolic calculus, and by symbolic means one can construct parametrices for Toeplitz operators and create new Toeplitz operators out of old ones by functional operations. If P is a self-adjoint pseudodifferential operator on a compact manifold with an elliptic symbol that is of order greater than zero, then it has a discrete spectrum. Also, it is well known that the asymptotic behavior of its eigenvalues is closely related to the behavior of the bicharacteristic flow generated by its symbol. It is natural to ask if similar results are true for Toeplitz operators. In the course of answering this question, the authors explore in depth the analogies between Toeplitz operators and pseudodifferential operators and show that both can be viewed as the "quantized" objects associated with functions on compact contact manifolds In English Spectral theory (Mathematics) Toeplitz operators Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Toeplitz-Operator (DE-588)4191521-5 gnd rswk-swf Toeplitz-Operator (DE-588)4191521-5 s Spektraltheorie (DE-588)4116561-5 s 1\p DE-604 Guillemin, Victor 1937- (DE-588)12110172X aut Erscheint auch als Druck-Ausgabe 0-691-08284-7 Annals of Mathematics Studies number 99 (DE-604)BV040389493 99 https://doi.org/10.1515/9781400881444?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Boutet de Monvel, Louis 1941-2014 Guillemin, Victor 1937- The spectral theory of Toeplitz operators Annals of Mathematics Studies Spectral theory (Mathematics) Toeplitz operators Spektraltheorie (DE-588)4116561-5 gnd Toeplitz-Operator (DE-588)4191521-5 gnd |
subject_GND | (DE-588)4116561-5 (DE-588)4191521-5 |
title | The spectral theory of Toeplitz operators |
title_auth | The spectral theory of Toeplitz operators |
title_exact_search | The spectral theory of Toeplitz operators |
title_full | The spectral theory of Toeplitz operators L. Boutet de Monvel, Victor Guillemin |
title_fullStr | The spectral theory of Toeplitz operators L. Boutet de Monvel, Victor Guillemin |
title_full_unstemmed | The spectral theory of Toeplitz operators L. Boutet de Monvel, Victor Guillemin |
title_short | The spectral theory of Toeplitz operators |
title_sort | the spectral theory of toeplitz operators |
topic | Spectral theory (Mathematics) Toeplitz operators Spektraltheorie (DE-588)4116561-5 gnd Toeplitz-Operator (DE-588)4191521-5 gnd |
topic_facet | Spectral theory (Mathematics) Toeplitz operators Spektraltheorie Toeplitz-Operator |
url | https://doi.org/10.1515/9781400881444?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT boutetdemonvellouis thespectraltheoryoftoeplitzoperators AT guilleminvictor thespectraltheoryoftoeplitzoperators |