Manifolds, sheaves, and cohomology:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Wiesbaden
Springer Spektrum
[2016]
|
Schriftenreihe: | Springer Studium Mathematik - Master
|
Schlagworte: | |
Online-Zugang: | BTU01 FHR01 FRO01 TUM01 UBM01 UBT01 UBW01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (XVI, 354 Seiten, 9 illus) |
ISBN: | 9783658106331 |
DOI: | 10.1007/978-3-658-10633-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043706205 | ||
003 | DE-604 | ||
005 | 20220311 | ||
007 | cr|uuu---uuuuu | ||
008 | 160809s2016 |||| o||u| ||||||eng d | ||
020 | |a 9783658106331 |c Online |9 978-3-658-10633-1 | ||
024 | 7 | |a 10.1007/978-3-658-10633-1 |2 doi | |
035 | |a (ZDB-2-SMA)9783658106331 | ||
035 | |a (OCoLC)955069489 | ||
035 | |a (DE-599)BVBBV043706205 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-20 |a DE-739 |a DE-634 |a DE-898 |a DE-861 |a DE-703 |a DE-824 |a DE-83 | ||
082 | 0 | |a 512.6 |2 23 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Wedhorn, Torsten |d 1970- |e Verfasser |0 (DE-588)120349183 |4 aut | |
245 | 1 | 0 | |a Manifolds, sheaves, and cohomology |c Torsten Wedhorn |
264 | 1 | |a Wiesbaden |b Springer Spektrum |c [2016] | |
300 | |a 1 Online-Ressource (XVI, 354 Seiten, 9 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Studium Mathematik - Master | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Category theory (Mathematics) | |
650 | 4 | |a Homological algebra | |
650 | 4 | |a Topological groups | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Differential geometry | |
650 | 4 | |a Category Theory, Homological Algebra | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Garbe |g Mathematik |0 (DE-588)4019261-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohomologie |0 (DE-588)4031700-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Garbe |g Mathematik |0 (DE-588)4019261-1 |D s |
689 | 0 | 2 | |a Kohomologie |0 (DE-588)4031700-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-658-10632-4 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-658-10633-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2016 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029118519 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-658-10633-1 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-658-10633-1 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-658-10633-1 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-658-10633-1 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-658-10633-1 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-658-10633-1 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-658-10633-1 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-658-10633-1 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-658-10633-1 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176491458592768 |
---|---|
any_adam_object | |
author | Wedhorn, Torsten 1970- |
author_GND | (DE-588)120349183 |
author_facet | Wedhorn, Torsten 1970- |
author_role | aut |
author_sort | Wedhorn, Torsten 1970- |
author_variant | t w tw |
building | Verbundindex |
bvnumber | BV043706205 |
classification_rvk | SK 240 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9783658106331 (OCoLC)955069489 (DE-599)BVBBV043706205 |
dewey-full | 512.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.6 |
dewey-search | 512.6 |
dewey-sort | 3512.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-658-10633-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03221nmm a2200745zc 4500</leader><controlfield tag="001">BV043706205</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220311 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160809s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783658106331</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-658-10633-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-658-10633-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783658106331</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)955069489</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043706205</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wedhorn, Torsten</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120349183</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Manifolds, sheaves, and cohomology</subfield><subfield code="c">Torsten Wedhorn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Springer Spektrum</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 354 Seiten, 9 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Studium Mathematik - Master</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Category theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homological algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Category Theory, Homological Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Garbe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4019261-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Garbe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4019261-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-658-10632-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-658-10633-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2016</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029118519</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-658-10633-1</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-658-10633-1</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-658-10633-1</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-658-10633-1</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-658-10633-1</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-658-10633-1</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-658-10633-1</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-658-10633-1</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-658-10633-1</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV043706205 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:02Z |
institution | BVB |
isbn | 9783658106331 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029118519 |
oclc_num | 955069489 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-20 DE-739 DE-634 DE-898 DE-BY-UBR DE-861 DE-703 DE-824 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-20 DE-739 DE-634 DE-898 DE-BY-UBR DE-861 DE-703 DE-824 DE-83 |
physical | 1 Online-Ressource (XVI, 354 Seiten, 9 illus) |
psigel | ZDB-2-SMA ZDB-2-SMA_2016 |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Springer Spektrum |
record_format | marc |
series2 | Springer Studium Mathematik - Master |
spelling | Wedhorn, Torsten 1970- Verfasser (DE-588)120349183 aut Manifolds, sheaves, and cohomology Torsten Wedhorn Wiesbaden Springer Spektrum [2016] 1 Online-Ressource (XVI, 354 Seiten, 9 illus) txt rdacontent c rdamedia cr rdacarrier Springer Studium Mathematik - Master Mathematics Category theory (Mathematics) Homological algebra Topological groups Lie groups Global analysis (Mathematics) Manifolds (Mathematics) Differential geometry Category Theory, Homological Algebra Topological Groups, Lie Groups Differential Geometry Global Analysis and Analysis on Manifolds Mathematik Garbe Mathematik (DE-588)4019261-1 gnd rswk-swf Kohomologie (DE-588)4031700-6 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Mannigfaltigkeit (DE-588)4037379-4 s Garbe Mathematik (DE-588)4019261-1 s Kohomologie (DE-588)4031700-6 s DE-604 Erscheint auch als Druckausgabe 978-3-658-10632-4 https://doi.org/10.1007/978-3-658-10633-1 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Wedhorn, Torsten 1970- Manifolds, sheaves, and cohomology Mathematics Category theory (Mathematics) Homological algebra Topological groups Lie groups Global analysis (Mathematics) Manifolds (Mathematics) Differential geometry Category Theory, Homological Algebra Topological Groups, Lie Groups Differential Geometry Global Analysis and Analysis on Manifolds Mathematik Garbe Mathematik (DE-588)4019261-1 gnd Kohomologie (DE-588)4031700-6 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
subject_GND | (DE-588)4019261-1 (DE-588)4031700-6 (DE-588)4037379-4 (DE-588)4123623-3 |
title | Manifolds, sheaves, and cohomology |
title_auth | Manifolds, sheaves, and cohomology |
title_exact_search | Manifolds, sheaves, and cohomology |
title_full | Manifolds, sheaves, and cohomology Torsten Wedhorn |
title_fullStr | Manifolds, sheaves, and cohomology Torsten Wedhorn |
title_full_unstemmed | Manifolds, sheaves, and cohomology Torsten Wedhorn |
title_short | Manifolds, sheaves, and cohomology |
title_sort | manifolds sheaves and cohomology |
topic | Mathematics Category theory (Mathematics) Homological algebra Topological groups Lie groups Global analysis (Mathematics) Manifolds (Mathematics) Differential geometry Category Theory, Homological Algebra Topological Groups, Lie Groups Differential Geometry Global Analysis and Analysis on Manifolds Mathematik Garbe Mathematik (DE-588)4019261-1 gnd Kohomologie (DE-588)4031700-6 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
topic_facet | Mathematics Category theory (Mathematics) Homological algebra Topological groups Lie groups Global analysis (Mathematics) Manifolds (Mathematics) Differential geometry Category Theory, Homological Algebra Topological Groups, Lie Groups Differential Geometry Global Analysis and Analysis on Manifolds Mathematik Garbe Mathematik Kohomologie Mannigfaltigkeit Lehrbuch |
url | https://doi.org/10.1007/978-3-658-10633-1 |
work_keys_str_mv | AT wedhorntorsten manifoldssheavesandcohomology |