Quantum invariants of knots and 3-manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin/Boston
De Gruyter
[2016]
|
Ausgabe: | 3rd edition |
Schriftenreihe: | De Gruyter Studies in Mathematics
18 |
Schlagworte: | |
Online-Zugang: | http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110442663&searchTitles=true Inhaltsverzeichnis |
Beschreibung: | xii, 596 Seiten Illustrationen, Diagramme 24 cm x 17 cm |
ISBN: | 9783110435238 9783110442663 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV043694580 | ||
003 | DE-604 | ||
005 | 20171129 | ||
007 | t | ||
008 | 160801s2016 gw a||| |||| 00||| eng d | ||
015 | |a 16,N08 |2 dnb | ||
016 | 7 | |a 108276566X |2 DE-101 | |
020 | |a 9783110435238 |c SetISBN |9 978-3-11-043523-8 | ||
020 | |a 9783110442663 |c Print |9 978-3-11-044266-3 | ||
024 | 3 | |a 9783110442663 | |
035 | |a (OCoLC)941672906 | ||
035 | |a (DE-599)DNB108276566X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-29T |a DE-19 |a DE-83 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a 81T45 |2 msc | ||
100 | 1 | |a Turaev, Vladimir G. |d 1954- |0 (DE-588)122717791 |4 aut | |
245 | 1 | 0 | |a Quantum invariants of knots and 3-manifolds |c Vladimir G. Turaev |
250 | |a 3rd edition | ||
264 | 1 | |a Berlin/Boston |b De Gruyter |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a xii, 596 Seiten |b Illustrationen, Diagramme |c 24 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a De Gruyter Studies in Mathematics |v 18 | |
650 | 0 | 7 | |a Knotentheorie |0 (DE-588)4164318-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Knoten |g Mathematik |0 (DE-588)4164314-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Monoidale Kategorie |0 (DE-588)4170466-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Invariante |0 (DE-588)4310559-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dimension 3 |0 (DE-588)4321722-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | 2 | |a Monoidale Kategorie |0 (DE-588)4170466-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 1 | 1 | |a Dimension 3 |0 (DE-588)4321722-9 |D s |
689 | 1 | 2 | |a Knoten |g Mathematik |0 (DE-588)4164314-8 |D s |
689 | 1 | 3 | |a Topologische Invariante |0 (DE-588)4310559-2 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 2 | 1 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |D s |
689 | 2 | 2 | |a Knotentheorie |0 (DE-588)4164318-5 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-043456-9 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-043522-1 |
830 | 0 | |a De Gruyter Studies in Mathematics |v 18 |w (DE-604)BV000005407 |9 18 | |
856 | 4 | 0 | |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110442663&searchTitles=true |x Verlag |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029107156&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029107156 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176471313350656 |
---|---|
adam_text | CONTENTS
INTRODUCTION.................................................................................................................
1
P A RT I. TOWARDS TOPOLOGICAL FIELD T H E O R Y
.....................................................
15
CHAPTER 1 INVARIANTS OF 17
1 RIBBON
CATEGORIES.............................................................................................
17
2. OPERATOR INVIIANTS OF RIBBON
GRAPHS.............................................................. 30
3 REDUCTION OF THEOREM 2.5 TO 1
^ *
..............................................................49
4. PROOF OF LEM
MAS...............................................................................................
57
N
OTES.........................................................................................................................
71
CHAPTER II. INVARIANTS OF CLOSED *
-MANIFOLDS........................................................ 72
1. MODULAR IENSOR
CATEGORIES...............................................................................
72
2 I N V A R I* S OF 3*M IR 0 1 D S
................................................................................
78
3. PROOF OF L O R E M 2.3.2. ACTION OF 5* (2, Z )
...............................................
84
4. COMPUTATIONS IN SEMISIMPLE
CATEGORIES.......................................................... 99
5 HERMITIAN AND UNITARY
CATEGORIES.................................................................
108
NOTES......................................................... 116
CHAPTER III. FOUNDATIONS OF TOPOLOGICAL QUANTUM FIELD THEORY
...... 118
1 AXIOMATIC DEFINITION OF TQFT*S
................................................................. 118
2. FUNDAMENTAL
PROPERTIES.................................................................................
127
3 ISOM OIPHISM SOFTQ FT*S
..............................................................................
132
4. QUANTUM
INVARIANTS.........................................................................................
136
5 HERMITIAN AND UNITARY TQFT*S
...................................................................
142
6 ELIMINATION OF
ANOMALIES..............................................................................
145
N
OTES.......................................................................................................................
150
CHAPTER IV. THREE-DIMENSIONAL TOPOLOGICAL QUANTUM FIELD THEORY. ........
152
1 THREE-DIMENSIONAL TQFT: PRELIMINARY
VERSION.......................................... 152
2 PROOF OF L O R E M
1.9.....................................................................................
162
J. LAGRANGIAN RELATIONS AND MASLOV IN D IC E S
..................................................
179
4. COMPUTATION OF ANOM
ALIES............................................................................
186
DEFINITION OF SHADOWS
....................................
MISCELLANEOUS DEFINITIONS AND CONSTRICTIONS
SHADOW L IN K S
.................................................
CHAPTER VIII. GENERALITIES ON SHADOWS
367
367
371
376
5 ACTION OF THE MODULAR G RO U P O ID
................................................................. 190
6
RENORMALIZED *-DIMENSIONAL
TQFT.............................................................. 196
7. COMPUTATIONS IN THE RENORMALIZED T Q F T
.................................................. 207
8
ABSOLUTE ANOMALY-FREE T Q F T
......................................................................
210
9. ANOMALY-FREE
TQFT......................................................................................
213
10 HERMITIEN TQFT
............................................................................................
217
11. UNITARY
TQFT.................................................................................................
223
12 VERIINDE ALGEBRA
............................................................................................
226
N
OTES.......................................................................................................................
234
CHAPTER V. TWO-DIMENSIONAL MODULAR FU N CTO
RS............................................... 236
1. AXIOMS FOR A 2*DIMENSIONAL MODULAR
FUNCTOR............................................. 236
2. UNDERLYING RIBBON
CATEGORY...........................................................................
247
3 WEAK AND MIRROR MODULAR
FUNCTORS.............................................................
266
4 CONSTRUCTION OF MODULAR FU N CTO
RS............................................................... 268
5. CONSTRUCTION OF MODULAR FUNCTORS
CONTINUED.............................................. 274
N
OTES.......................................................................................................................
297
P A RT II. THE SHADOW W O R L D
.............................................................................
299
CHAPTER VI.
6
*
-SYM BOLS
.......................................................................................
301
1. ALGEBRAIC APPROACH TO 301
2. UNIMODAL
CATEGORIES.......................................................................................
310
3 SYMMETRIZED MULTIPLICITY M O D U LE
S............................................................. 312
4 FRAMED G RA P H S
...............................................................................................
318
5. GEOMETRIC APPROACH TO
67
* * * .............................................................
331
N
OTES.......................................................................................................................
344
CHAPTER VII SIMPLICIAL STATE SUMS ON *-M ANIFOLDS
..........................................
345
1. STATE SUM MODELS ON TRIANGULATED
3
*MANIF
01
D S
............................................
345
2. PROOF OF L O R E M S 1.4 * 1.7 .......
* .*
....................... 351
3 SIMPLICIAL D IM E N SIO N A L T Q F T
................................................................. 356
4 COMPARISON OF TWO
APPROACHES...................................................................
361
1
2
3
4 SURGERIES **
SHADOWS....................................................................................
382
5 BILINEAR FORMS OF
SHADOWS...........................................................................
386
6 INTEGER SHADOW
S............................................................
388
7 SHADOW
GRAPHS...............................................................................................
391
N
OTES.......................................................................................................................
393
CHAPTER IX. SHADOWS OF M
ANIFOLDS.....................................................................
394
1 SHADOWS OF
4_MA!UEFOLDS................................................................................
394
2 SHADOWS OF
3_MA!!IFOLDS................................................................................
400
3 S H A D _ OF LINKS IN
*-MANIFOLDS.................................................................
405
4. SHADOWS OF 4-MANIFOLDS VIA HANDLE DECOMPOSITIONS ...... 410
5 COMPARISON OF BILINEAR FO RM S
.....................................................................
413
6 THICKENING OF
SHADOWS..................................................................................
417
7 PROOF OF I O R E M S 1.5
AND
1.7-1.11........................................................... 427
8 SHADOWS OF FRAMED
GRAPHS............................................................................
431
NNTPG 434
CHAPTER X. STATE SUMS ON
SHADOWS......................................................................
435
1. STATE SUM MODELS ON SHADOWED
POLYHEDRA................................................ 435
2 STATE SUM INVARIANTS OF SHADOW
S................................................................. 444
3. INVARIANTS OF * -MANIFOLDS FROM THE SHADOW VIEWPOINT.
.............. 450
4. REDUCTION OF THEOREM 3.3 TO A LEM M
A........................................................ 452
5 PASSAGE TO THE SHADOW WORLD
.......................................................................
455
6 PROOF OF THEOREM
5.6....................................................................................
463
7. INV^IANTS OF FRAMED GRAPHS FROM THE SHADOW VIEWPOINT. ............
473
8 PROOF OF THEOREM V II.4 .2
............................................................................
477
9. COMPUTATIONS FOR GRAPH M
ANIFOLDS.............................................................
484
N
OTES.......................................................................................................................
489
PART III. TOWARDS MODULAR C
ATEGORIES.......................................................... 491
CHAPTER XI. AN ALGEBRAIC C
0
N _ ^ 493
1. HOPS ALGEBRAS A D CATEGORIES OF
......................................... 493
2 Q UASITRI^GULAR HOPS A LG E B R A
......................................................................
496
3 RIBBON HOPS ALGEBRAS
.....................................................................................
5 *
4. DIGRESSION ON QUASIM ODULA ^
........................................................ 503
5 MODULAR HOPS
ALGEBRAS...................................................................................
506
6. QUANTUM GROUPS AT ROOTS OF U N ITY
................................................................ 508
7. QUANTUM GROUPS WITH GENERIC PARAMETER
.....................................................
513
N
OTES.......................................................................................................................
517
XII CONTENTS
CHAPTER XII. A GEOMETRIC CONSTRUCTION OF MODULAR CATEGORIES .....
518
1. SKEIN MODULES AND THE JONES 518
2 SKEIN C A TE G O RY
...............................................................................................
523
3 THE TEMPERLEY*LIEB A LG E B RA
.......................................................................
526
4 THE JONES*WENZL IDEM
POTENTS.....................................................................
529
5. THE MATRIX 5
...................................................................................................
535
6 REFINED SKEIN
CATEGORY..................................................................................
539
7. MODULAR AND SEMISIMPLE SKEIN
CATEGORIES.................................................... 546
8 MULTIPLICITY M O D U LE
S....................................................................................
551
9. HERMITIAN AND UNITARY SKEIN CATEGORIES
......................................................
557
N
OTES.......................................................................................................................
559
APPENDIX I. DIMENSION AND TRACE
RE-EXAMINED................................................. 561
APPENDIX II. VERTEX MODELS ON LINK D IAGRAM
S................................................. 563
APPENDIX III. GLUING RE-EXAMINED
......................................................................
565
APPENDIX IV. THE SIGNATURE OF CLOSED 4-MANIF01DS FROM A STATE SUM......
568
REFERENCES...............................................................................................................
571
SUBJECT IN D E X
........................................................................................................
593
|
any_adam_object | 1 |
author | Turaev, Vladimir G. 1954- |
author_GND | (DE-588)122717791 |
author_facet | Turaev, Vladimir G. 1954- |
author_role | aut |
author_sort | Turaev, Vladimir G. 1954- |
author_variant | v g t vg vgt |
building | Verbundindex |
bvnumber | BV043694580 |
classification_rvk | SK 340 SK 950 UO 4000 |
ctrlnum | (OCoLC)941672906 (DE-599)DNB108276566X |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
edition | 3rd edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03289nam a2200769 cb4500</leader><controlfield tag="001">BV043694580</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171129 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">160801s2016 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">16,N08</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">108276566X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110435238</subfield><subfield code="c">SetISBN</subfield><subfield code="9">978-3-11-043523-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110442663</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-11-044266-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110442663</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)941672906</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB108276566X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">81T45</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Turaev, Vladimir G.</subfield><subfield code="d">1954-</subfield><subfield code="0">(DE-588)122717791</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum invariants of knots and 3-manifolds</subfield><subfield code="c">Vladimir G. Turaev</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3rd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin/Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 596 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Studies in Mathematics</subfield><subfield code="v">18</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knotentheorie</subfield><subfield code="0">(DE-588)4164318-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knoten</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4164314-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monoidale Kategorie</subfield><subfield code="0">(DE-588)4170466-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Invariante</subfield><subfield code="0">(DE-588)4310559-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Monoidale Kategorie</subfield><subfield code="0">(DE-588)4170466-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Knoten</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4164314-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Topologische Invariante</subfield><subfield code="0">(DE-588)4310559-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Knotentheorie</subfield><subfield code="0">(DE-588)4164318-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-043456-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-043522-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter Studies in Mathematics</subfield><subfield code="v">18</subfield><subfield code="w">(DE-604)BV000005407</subfield><subfield code="9">18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110442663&searchTitles=true</subfield><subfield code="x">Verlag</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029107156&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029107156</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043694580 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:32:42Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783110435238 9783110442663 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029107156 |
oclc_num | 941672906 |
open_access_boolean | |
owner | DE-29T DE-19 DE-BY-UBM DE-83 |
owner_facet | DE-29T DE-19 DE-BY-UBM DE-83 |
physical | xii, 596 Seiten Illustrationen, Diagramme 24 cm x 17 cm |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | De Gruyter |
record_format | marc |
series | De Gruyter Studies in Mathematics |
series2 | De Gruyter Studies in Mathematics |
spelling | Turaev, Vladimir G. 1954- (DE-588)122717791 aut Quantum invariants of knots and 3-manifolds Vladimir G. Turaev 3rd edition Berlin/Boston De Gruyter [2016] © 2016 xii, 596 Seiten Illustrationen, Diagramme 24 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier De Gruyter Studies in Mathematics 18 Knotentheorie (DE-588)4164318-5 gnd rswk-swf Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Knoten Mathematik (DE-588)4164314-8 gnd rswk-swf Monoidale Kategorie (DE-588)4170466-6 gnd rswk-swf Topologische Invariante (DE-588)4310559-2 gnd rswk-swf Dimension 3 (DE-588)4321722-9 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s Topologie (DE-588)4060425-1 s Monoidale Kategorie (DE-588)4170466-6 s DE-604 Mannigfaltigkeit (DE-588)4037379-4 s Dimension 3 (DE-588)4321722-9 s Knoten Mathematik (DE-588)4164314-8 s Topologische Invariante (DE-588)4310559-2 s Topologische Mannigfaltigkeit (DE-588)4185712-4 s Knotentheorie (DE-588)4164318-5 s 1\p DE-604 Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl Erscheint auch als Online-Ausgabe, EPUB 978-3-11-043456-9 Erscheint auch als Online-Ausgabe, PDF 978-3-11-043522-1 De Gruyter Studies in Mathematics 18 (DE-604)BV000005407 18 http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110442663&searchTitles=true Verlag DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029107156&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Turaev, Vladimir G. 1954- Quantum invariants of knots and 3-manifolds De Gruyter Studies in Mathematics Knotentheorie (DE-588)4164318-5 gnd Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd Topologie (DE-588)4060425-1 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Knoten Mathematik (DE-588)4164314-8 gnd Monoidale Kategorie (DE-588)4170466-6 gnd Topologische Invariante (DE-588)4310559-2 gnd Dimension 3 (DE-588)4321722-9 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
subject_GND | (DE-588)4164318-5 (DE-588)4185712-4 (DE-588)4060425-1 (DE-588)4037379-4 (DE-588)4164314-8 (DE-588)4170466-6 (DE-588)4310559-2 (DE-588)4321722-9 (DE-588)4047984-5 |
title | Quantum invariants of knots and 3-manifolds |
title_auth | Quantum invariants of knots and 3-manifolds |
title_exact_search | Quantum invariants of knots and 3-manifolds |
title_full | Quantum invariants of knots and 3-manifolds Vladimir G. Turaev |
title_fullStr | Quantum invariants of knots and 3-manifolds Vladimir G. Turaev |
title_full_unstemmed | Quantum invariants of knots and 3-manifolds Vladimir G. Turaev |
title_short | Quantum invariants of knots and 3-manifolds |
title_sort | quantum invariants of knots and 3 manifolds |
topic | Knotentheorie (DE-588)4164318-5 gnd Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd Topologie (DE-588)4060425-1 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Knoten Mathematik (DE-588)4164314-8 gnd Monoidale Kategorie (DE-588)4170466-6 gnd Topologische Invariante (DE-588)4310559-2 gnd Dimension 3 (DE-588)4321722-9 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
topic_facet | Knotentheorie Topologische Mannigfaltigkeit Topologie Mannigfaltigkeit Knoten Mathematik Monoidale Kategorie Topologische Invariante Dimension 3 Quantenfeldtheorie |
url | http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110442663&searchTitles=true http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029107156&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000005407 |
work_keys_str_mv | AT turaevvladimirg quantuminvariantsofknotsand3manifolds AT walterdegruytergmbhcokg quantuminvariantsofknotsand3manifolds |