The mathematical brain across the lifespan:
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
2016
|
Ausgabe: | First edition |
Schriftenreihe: | Progress in brain research
volume 227 |
Schlagworte: | |
Online-Zugang: | UER01 URL des Erstveröffentlichers Inhaltsverzeichnis |
Beschreibung: | 1 Online-Ressource Illustrationen, Diagramme |
ISBN: | 9780444637024 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043674802 | ||
003 | DE-604 | ||
005 | 20161018 | ||
007 | cr|uuu---uuuuu | ||
008 | 160718s2016 |||| o||u| ||||||eng d | ||
020 | |a 9780444637024 |c ebk. |9 978-0-444-63702-4 | ||
035 | |a (OCoLC)953821639 | ||
035 | |a (DE-599)BVBBV043674802 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29 | ||
245 | 1 | 0 | |a The mathematical brain across the lifespan |c edited by Marinella Cappelletti and Wim Fias |
250 | |a First edition | ||
264 | 1 | |a Amsterdam |b Elsevier |c 2016 | |
300 | |a 1 Online-Ressource |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in brain research |v volume 227 | |
650 | 0 | 7 | |a Lebensalter |0 (DE-588)4034834-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gehirn |0 (DE-588)4019752-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fähigkeit |0 (DE-588)4153521-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entwicklung |0 (DE-588)4113450-3 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Gehirn |0 (DE-588)4019752-9 |D s |
689 | 0 | 1 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | 2 | |a Fähigkeit |0 (DE-588)4153521-2 |D s |
689 | 0 | 3 | |a Lebensalter |0 (DE-588)4034834-9 |D s |
689 | 0 | 4 | |a Entwicklung |0 (DE-588)4113450-3 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Cappelletti, Marinella |0 (DE-588)1114754366 |4 edt | |
700 | 1 | |a Fias, Wim |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-444-63698-0 |
830 | 0 | |a Progress in brain research |v volume 227 |w (DE-604)BV021799669 |9 227 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/bookseries/00796123/227 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029087847&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029087847 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.sciencedirect.com/science/bookseries/00796123/227 |l UER01 |p ZDB-33-ESD |q UER_Serienkauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176437961293825 |
---|---|
adam_text | Titel: The mathematical brain across the lifespan
Autor: Cappelletti, Marinella
Jahr: 2016
Contents
Contributors................................................................................................................
Preface.....................................................................................................................xv
CHAPTER 1 Neuronal Foundations of Human Numerical
Representations.........................................................................1
E. Eger
1. Introduction.....................................................................................1
2. A Core Numerical Representation in Parietal Cortex....................3
2.1. Numerical Processing and the Coarse Scale
Functional Neuroanatomy of Parietal Cortex........................3
2.2. Fine-Scale Representation of Numerical Information:
Findings From Macaque Neurophysiology............................6
2.3. Fine-Scale Representation of Numerical Information:
fMRI in Humans.....................................................................8
3. The Extraction of Numerical Information: Format-Specific
Contributions Within and Beyond Parietal Cortex......................15
3.1. The Extraction of Numerosity from Concrete Sets
of Objects..............................................................................15
3.2. The Extraction of Number from Symbols...........................19
4. Concluding Remarks.....................................................................21
References.....................................................................................22
CHAPTER 2 What Counts in Estimation? The Nature
of the Preverbal System........................................................29
V. Karolis, B. Butterworth
1. The Preverbal System...................................................................29
1.1. Accumulator Model..............................................................30
1.2. Analogue Magnitude System...............................................31
2. Neural Implementation of a Preverbal System and
Verbal Counting Series.................................................................34
3. Our Aim........................................................................................35
4. Binomial Accumulator..................................................................36
5. Poisson Accumulator....................................................................37
6. Doubly Stochastic Process............................................................38
7. Implications of Linear Accumulator Models...............................39
8. Numerical Consequences of the AMS Hypothesis......................40
9. Utility of AMS Hypothesis...........................................................41
10. AMS Integrator.............................................................................41
vii
Contents
11. Building an AMS Accumulator....................................................42
12. AMS Accumulator or AMS Integrator?.......................................43
12.1. Method................................................................................44
12.2. Results and Discussion.......................................................45
13. Representations of Magnitude Orders: Stochastic
Cascades........................................................................................46
14. Log vs Linear: Is This an Issue (for Learning)?..........................46
15. Conclusions...................................................................................48
Acknowledgments........................................................................48
References.....................................................................................48
CHAPTER 3 Core Mathematical Abilities in Infants:
Number and Much More.......................................................53
M.D. de Hevia
1. Introduction...................................................................................53
2. Two Cognitive Systems for Nonverbal Numerical
Representation...............................................................................54
3. Infants Arithmetical Computations on Numerosities.................57
4. Beyond Number: Other Quantitative Dimensions.......................59
5. Infants Mappings Across Quantitative Dimensions...................60
6. A Spatially Oriented Representation of Number
in Infants.......................................................................................65
7. Conclusions...................................................................................67
References.....................................................................................69
CHAPTER 4 Cognitive and Brain Systems Underlying Early
Mathematical Development.................................................75
D.C. Geary, A.M. Moore
1. Intuitions of Number.....................................................................76
1.1. The OTS................................................................................77
1.2. The ANS...............................................................................79
2. Relations Between ANS Acuity and Mathematical
Achievement.................................................................................84
3. The Role of Domain-general Abilities.........................................86
3.1. Mathematics Learning in Evolutionary Context..................86
3.2. Executive Functions and Mathematics Learning.................87
4. Conclusion.....................................................................................94
Acknowledgments........................................................................94
References.....................................................................................95
Contents
CHAPTER 5 Individual Differences in Children s Mathematics
Achievement: The Roles of Symbolic Numerical
Magnitude Processing and Domain-General
Cognitive Functions..............................................................105
K. Vanbinst, B. De Smedt
1. Introduction.................................................................................106
2. Neurocognitive Development of Arithmetic in Children..........108
3. Symbolic Numerical Magnitude Processing..............................110
4. Working Memory........................................................................113
5. Phonological Processing.............................................................118
6. Conclusions and Future Directions............................................120
Acknowledgments......................................................................122
References...................................................................................122
CHAPTER 6 Similarity Interference in Learning
and Retrieving Arithmetic Facts.......................................131
A. De Visscher, M.-P. Noel
1. Typical Development of Arithmetic Facts Network..................132
1.1. Models of Arithmetic Facts Network.................................132
1.2. Similarity Interference Through Development..................136
1.3. Similarity Interference in Arithmetic Facts:
Brain-Imaging Evidence.....................................................140
2. Atypical Development of Arithmetic Facts Network................141
2.1. Explanation for Arithmetic Facts
Learning/Retrieving Deficit................................................143
2.2. The Hypersensitivity-to-Interference
in Memory Hypothesis.......................................................145
3. Discussion and Conclusion.........................................................150
References...................................................................................152
CHAPTER 7 Memory and Cognitive Control Circuits in
Mathematical Cognition and Learning...........................159
V. Menon
1. Introduction.................................................................................159
2. Parietal-Frontal Working Memory Systems..............................162
2.1. Core and Noncore Parietal Systems Overlap in the IPS... 162
2.2. Multiple Parietal-Frontal Working Memory Circuits.......162
2.3. Parietal-Frontal Working Memory Systems
in Mathematical Cognition and Its Development..............164
2.4. Parietal-Frontal Impairments in Children
with Mathematical Disabilities...........................................166
x Contents
2.5. Hyperactive Parietal-Frontal Working Memory
Circuits in Children with MD............................................167
3. Hippocampal-Frontal Declarative Memory System..................169
3.1. The Medial Temporal Lobe: A System for
Associative Learning..........................................................169
3.2. Hippocampal-Frontal Cortex Circuits...............................171
3.3. Hippocampal-Prefrontal Coactivation in Children s
Mathematical Skill Development.......................................171
3.4. Hippocampal-Frontal Circuits in Children s
Mathematical Skill Development and Learning................173
4. Cognitive Control Systems in Mathematical Cognition............175
4.1. Flexible Hubs for Cognitive Control.................................175
4.2. Dynamic Parietal-Frontal Control Signals........................176
4.3. Dynamic Hippocampal-Frontal Control Signals...............176
5. Summary and Conclusions.........................................................179
References...................................................................................180
CHAPTER 8 On the Ordinality of Numbers:
A Review of Neural and Behavioral Studies................187
I.M. Lyons, S.E. Vogel, D. Ansari
1. General Introduction...................................................................188
2. How Different Are Ordinality and Cardinality?........................190
2.1. Ordinal and Cardinal Processing in the Brain...................190
2.2. Distance Effects: Different Signatures of Ordinal and Cardinal
Processing...........................................................................192
2.3. Symbolic vs Nonsymbolic Ordinal Processing..................194
2.4. Summary.............................................................................195
3. Is Numerical Order Special?......................................................195
3.1. Specificity of Numerical Order in the Brain.....................196
3.2. How Number Specific Are Canonical and Reverse
Distance Effects?................................................................198
3.3. Summary.............................................................................200
4. Increasing Ordinal Complexity: From Nonhuman
Animals to Development and Acquisition of Ordinality
in Humans...................................................................................200
4.1. Complex Ordinal Processing in Nonhuman Animals........200
4.2. Going Beyond Simple Item—Item Ordinal Associations
in Human Development and Learning...............................204
4.3. Summary.............................................................................206
5. Mechanisms that Support Numerical Ordinal Processing.........206
5.1. Magnitude-Based Mechanisms...........................................207
5.2. Serial-Order WM................................................................208
5.3. Spatial Mechanisms............................................................209
5.4. The Mechanisms Underlying Acquisition and
Access of Ordinal Associations..........................................211
5.5. Summary.............................................................................212
6, Ordinality and Implications for More Complex
Numerical Processing.................................................................212
6.1. Limitations..........................................................................215
7. Conclusions.................................................................................215
References...................................................................................216
CHAPTER 9 On the Instability and Constraints of the
Interaction Between Number Representation
and Spatial Attention in Healthy Humans:
A Concise Review of the Literature and
New Experimental Evidence..............................................223
E. Fattorini, M. Pinto, S. Merola, M. D Onofrio, F. Doricchi
1. Introduction.................................................................................224
1.1. Introspective Number Forms: The Mental
Number Line.......................................................................224
1.2. The SNARC Effect.............................................................225
1.3. The Attentional SNARC Effect.........................................227
1.4. The Present Study: The Influence of Task Demands
and the Set-Size of Numerical Cues on the
Attentional SNARC Effect.................................................232
2. Experiment 1: Attentional SNARC............................................233
2.1. Experiment 1A: Four-Digit Cues (1, 2, 8, and 9)..............233
2.2. Experiment IB: Eight-Digit Cues
(1,2, 3, 4, 6, 7, 8, and 9)...................................................236
3. Experiment 2: Imagery Attentional SNARC.............................238
3.1. Experiment 2A: Four-Digit Cues (1, 2, 8, and 9)..............238
3.2. Experiment 2B: Eight-Digit Cues
(1,2,3,4, 6, 7, 8, and 9)...................................................238
4. Experiment 3: Spatial Attentional SNARC................................241
4.1. Experiment 3A: Four-Digit Cues (1, 2, 8, and 9)..............241
4.2. Experiment 3B: Eight-Digit Cues
(1,2, 3, 4, 6, 7, 8, and 9)...................................................242
5. Experiment 4: Magnitude Attentional SNARC.........................244
5.1. Experiment 4A: Four-Digit Cues (1, 2, 8, and 9)..............244
5.2. Experiment 4B: Eight-Digit Cues
(1, 2, 3, 4, 6, 7, 8, and 9)...................................................246
Contents
6. Comparing the Strength of the Att-SNARC
Among Experiments 1-4............................................................249
7. Discussion...................................................................................251
8. Conclusions.................................................................................253
References...................................................................................253
CHAPTER 10 Age-Related Changes in Strategic Variations
During Arithmetic Problem Solving:
The Role of Executive Control..........................................257
T. Hinault, P. Lemaire
1. Age-related Differences During Arithmetic
Problem Solving..........................................................................258
1.1. Aging Effects on Arithmetic Performance........................258
1.2. Strategic Variations with Age in Arithmetic.....................259
2. The Role of Executive Processes in Strategic Variations
with Age in Arithmetic...............................................................261
2.1. Aging, Executive Control Processes, and Arithmetic
Strategy Use........................................................................261
2.2. Aging, Executive Control Processes, and Arithmetic
Strategy Selection...............................................................262
2.3. Aging, Executive Control Processes, and Arithmetic
Strategy Execution..............................................................264
3. Conclusions and Future Directions............................................270
References...................................................................................272
CHAPTER 11 Subtypes and Comorbidity in Mathematical
Learning Disabilities: Multidimensional Study
of Verbal and Visual Memory Processes is
Key to Understanding.............................................................277
D. Szucs
1. MLD and DD..............................................................................278
2. WM Models in MLD Research..................................................279
3. Verbal and Visual Memory Deficits in MLD............................281
4. Analysis of Study Data...............................................................284
4.1. Coverage of Memory Domains and Power........................284
5. Effect Sizes from Studies...........................................................287
6. Matching Reading and IQ in MLD and Control Groups...........287
6.1. Developmental Pathways...................................................292
6.2. Fractionating Subtypes of Visual Memory........................293
6.3. Fractionating EFs................................................................293
6.4. Studies with Ability-Matched Young Controls
and Intervention..................................................................294
7. Processing Networks and the Impact of General
Task Difficulty............................................................................295
8. MLD Subtypes, Network Coordination, and Individual
Variability...................................................................................295
8.1. Overall Conclusions...........................................................298
Acknowledgment........................................................................299
Appendix.....................................................................................299
References...................................................................................299
CHAPTER 12 Neurocognitive Accounts of Developmental
Dyscalculia and its Remediation.....................................305
T. luculano
1. Introduction.................................................................................305
2. Multiple Cognitive Factors Involved in DD..............................306
2.1. Number Sense Deficits.......................................................307
2.2. Memory Deficits.................................................................308
2.3. Ordinality and Other Numerical Mapping Deficits...........309
2.4. Other Domain-General Processing Deficits.......................310
2.5. Math Anxiety......................................................................311
3. Multiple Neurocognitive Systems Involved in DD....................311
3.1. Dorsal and Ventral Streams Deficits................................312
3.2. Frontoparietal Deficits........................................................313
3.3. Medial Temporal Lobe Deficits.........................................314
3.4. Network-Level Deficits......................................................315
4. Remediating DD.........................................................................316
4.1. Pedagogical and Cognitive Studies....................................316
4.2. Neuroimaging Studies........................................................317
4.3. Individual Differences in Intervention Outcomes..............319
4.4. Remediation of Persistent DD............................................319
4.5. Emergent Approaches: Embodied Intervention.................320
5. Conclusions and Future Directions............................................321
References...................................................................................323
CHAPTER 13 Approximate Numerical Abilities and Mathematics:
Insight from Correlational and Experimental
Training Studies....................................................................335
P.C. Hyde, I. Berteletti, Y. Mou
1. Cognitive Foundations for Mathematical Abilities....................336
1.1. Approximate Number System............................................3 37
Contents
1.2. Associations Between Approximate Numerical
Magnitudes and Symbolic Numbers..................................337
1.3. Correlations Between Approximate Numerical
Abilities and Mathematics Achievement...........................338
1.4. Experimental Training Studies on the Relationship
Between the ANS and Mathematics..................................339
1.5. Alternative Explanations....................................................342
2. Emerging Ideas from Empirical Work.......................................344
3. Conclusions.................................................................................347
References...................................................................................347
CHAPTER 14 Brain Stimulation, Mathematical, and
Numerical Training: Contribution of Core
and Noncore Skills...............................................................353
C.Y. Looi, R. Cohen Kadosh
1. Introduction.................................................................................354
2. Core and Noncore Skills.............................................................355
3. Brain Stimulation........................................................................363
4. Brain Stimulation and Mathematical Training...........................366
5. Conclusions and Future Directions............................................373
Acknowledgments......................................................................376
References...................................................................................376
Index.......................................................................................................................389
Other volumes in PROGRESS IN BRAIN RESEARCH..............................................397
|
any_adam_object | 1 |
author2 | Cappelletti, Marinella Fias, Wim |
author2_role | edt edt |
author2_variant | m c mc w f wf |
author_GND | (DE-588)1114754366 |
author_facet | Cappelletti, Marinella Fias, Wim |
building | Verbundindex |
bvnumber | BV043674802 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (OCoLC)953821639 (DE-599)BVBBV043674802 |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02433nmm a2200529 cb4500</leader><controlfield tag="001">BV043674802</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20161018 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160718s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444637024</subfield><subfield code="c">ebk.</subfield><subfield code="9">978-0-444-63702-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)953821639</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043674802</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The mathematical brain across the lifespan</subfield><subfield code="c">edited by Marinella Cappelletti and Wim Fias</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in brain research</subfield><subfield code="v">volume 227</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lebensalter</subfield><subfield code="0">(DE-588)4034834-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gehirn</subfield><subfield code="0">(DE-588)4019752-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fähigkeit</subfield><subfield code="0">(DE-588)4153521-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entwicklung</subfield><subfield code="0">(DE-588)4113450-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gehirn</subfield><subfield code="0">(DE-588)4019752-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fähigkeit</subfield><subfield code="0">(DE-588)4153521-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Lebensalter</subfield><subfield code="0">(DE-588)4034834-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Entwicklung</subfield><subfield code="0">(DE-588)4113450-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cappelletti, Marinella</subfield><subfield code="0">(DE-588)1114754366</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fias, Wim</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-444-63698-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in brain research</subfield><subfield code="v">volume 227</subfield><subfield code="w">(DE-604)BV021799669</subfield><subfield code="9">227</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/bookseries/00796123/227</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029087847&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029087847</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/bookseries/00796123/227</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">UER_Serienkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV043674802 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:32:11Z |
institution | BVB |
isbn | 9780444637024 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029087847 |
oclc_num | 953821639 |
open_access_boolean | |
owner | DE-29 |
owner_facet | DE-29 |
physical | 1 Online-Ressource Illustrationen, Diagramme |
psigel | ZDB-33-ESD ZDB-33-EBS ZDB-33-ESD UER_Serienkauf |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Elsevier |
record_format | marc |
series | Progress in brain research |
series2 | Progress in brain research |
spelling | The mathematical brain across the lifespan edited by Marinella Cappelletti and Wim Fias First edition Amsterdam Elsevier 2016 1 Online-Ressource Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Progress in brain research volume 227 Lebensalter (DE-588)4034834-9 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Gehirn (DE-588)4019752-9 gnd rswk-swf Fähigkeit (DE-588)4153521-2 gnd rswk-swf Entwicklung (DE-588)4113450-3 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Gehirn (DE-588)4019752-9 s Mathematik (DE-588)4037944-9 s Fähigkeit (DE-588)4153521-2 s Lebensalter (DE-588)4034834-9 s Entwicklung (DE-588)4113450-3 s 2\p DE-604 Cappelletti, Marinella (DE-588)1114754366 edt Fias, Wim edt Erscheint auch als Druck-Ausgabe, Hardcover 978-0-444-63698-0 Progress in brain research volume 227 (DE-604)BV021799669 227 http://www.sciencedirect.com/science/bookseries/00796123/227 Verlag URL des Erstveröffentlichers Volltext HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029087847&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | The mathematical brain across the lifespan Progress in brain research Lebensalter (DE-588)4034834-9 gnd Mathematik (DE-588)4037944-9 gnd Gehirn (DE-588)4019752-9 gnd Fähigkeit (DE-588)4153521-2 gnd Entwicklung (DE-588)4113450-3 gnd |
subject_GND | (DE-588)4034834-9 (DE-588)4037944-9 (DE-588)4019752-9 (DE-588)4153521-2 (DE-588)4113450-3 (DE-588)4143413-4 |
title | The mathematical brain across the lifespan |
title_auth | The mathematical brain across the lifespan |
title_exact_search | The mathematical brain across the lifespan |
title_full | The mathematical brain across the lifespan edited by Marinella Cappelletti and Wim Fias |
title_fullStr | The mathematical brain across the lifespan edited by Marinella Cappelletti and Wim Fias |
title_full_unstemmed | The mathematical brain across the lifespan edited by Marinella Cappelletti and Wim Fias |
title_short | The mathematical brain across the lifespan |
title_sort | the mathematical brain across the lifespan |
topic | Lebensalter (DE-588)4034834-9 gnd Mathematik (DE-588)4037944-9 gnd Gehirn (DE-588)4019752-9 gnd Fähigkeit (DE-588)4153521-2 gnd Entwicklung (DE-588)4113450-3 gnd |
topic_facet | Lebensalter Mathematik Gehirn Fähigkeit Entwicklung Aufsatzsammlung |
url | http://www.sciencedirect.com/science/bookseries/00796123/227 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029087847&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV021799669 |
work_keys_str_mv | AT cappellettimarinella themathematicalbrainacrossthelifespan AT fiaswim themathematicalbrainacrossthelifespan |