Physical chemistry: how chemistry works
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester, West Sussex
Wiley
2017
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | xvii, 726 Seiten Illustrationen, Diagramme (teilweise farbig) |
ISBN: | 1118751124 9781118751121 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043673639 | ||
003 | DE-604 | ||
005 | 20191025 | ||
007 | t | ||
008 | 160716s2017 a||| |||| 00||| eng d | ||
020 | |a 1118751124 |9 1-118-75112-4 | ||
020 | |a 9781118751121 |c pbk. |9 978-1-118-75112-1 | ||
035 | |a (OCoLC)966294073 | ||
035 | |a (DE-599)BVBBV043673639 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-703 |a DE-19 |a DE-634 | ||
050 | 0 | |a QD453.3 | |
082 | 0 | |a 541 |2 23 | |
084 | |a VE 5000 |0 (DE-625)147104: |2 rvk | ||
084 | |a VE 5010 |0 (DE-625)147105: |2 rvk | ||
100 | 1 | |a Kolasinski, Kurt W. |e Verfasser |0 (DE-588)138439060 |4 aut | |
245 | 1 | 0 | |a Physical chemistry |b how chemistry works |c Kurt W. Kolasinski, Department of Chemistry, West Chester University, USA |
264 | 1 | |a Chichester, West Sussex |b Wiley |c 2017 | |
300 | |a xvii, 726 Seiten |b Illustrationen, Diagramme (teilweise farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Chemistry, Physical and theoretical | |
650 | 0 | 7 | |a Physikalische Chemie |0 (DE-588)4045959-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Physikalische Chemie |0 (DE-588)4045959-7 |D s |
689 | 0 | |5 DE-604 | |
776 | 1 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-1-118-75120-6 |
776 | 1 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-1-118-75121-3 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029086718&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029086718&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-029086718 |
Datensatz im Suchindex
_version_ | 1804176435894550528 |
---|---|
adam_text | Contents
Preface XV
About the companion website xvii
1 Introduction 1
1.1 Atoms and molecules 1
1.2 Phases 2
1.3 Energy 3
1.4 Chemical reactions 4
1.5 Problem solving 5
1.6 Some conventions 7
Exercises 11
Further reading 14
2 Ideal gases 15
2.1 Ideal gas equation of state 16
2.2 Molecular degrees of freedom 18
2.3 Translational energy: Distribution and relation to pressure 21
2.4 Maxwell distribution of molecular speeds 23
2.5 Principle of equipartition of energy 24
2.6 Temperature and the zeroth law of thermodynamics 25
2.7 Mixtures of gases 27
2.8 Molecular collisions 27
Exercises 29
Further reading 30
3 Non-ideal gases and intermolecular interactions 31
3.1 Non-ideal behavior 31
3.2 Interactions of matter with matter 32
3.3 Intermolecular interactions 34
3.4 Real gases 39
3.5 Corresponding states 42
3.6 Supercritical fluids 43
Exercises
Further reading
4 Liquids, liquid crystals, and ionic liquids
4.1 Liquid formation 45
4.2 Properties of liquids 45
4.3 Intermolecular interaction in liquids 47
4.4 Structure of liquids 50
4.5 Internal energy and equation of state of a rigid sphere liquid 52
4.6 Concentration units 53
4.7 Diffusion 55
4.8 Viscosity 57
VII
viii Contents
•1.9 Migration
l. [U Interlace formation
111 Liquid cryslals
1.12 Ionic liquids
lixereises
I urther reading
59
60
62
64
66
67
5 Solids, nanopartides, and interlaces
5.1 Solid formation
5.2 Electronic structure of solids
5. (ieometrical structure of solids
5.2 Interface formation
5.5 (Hass formation
5.6 (dusters and nanoparticles
5.7 The carbon family: Diamond, graphite, graphene, fullerenes, and carbon nanotubes
5.8 Porous solids
5.9 Polymers and macromolecules
lixereises
lindnotes
I dirt her reading
68
68
70
72
76
78
78
80
83
06
86
C ;՛ ՛
6 Statistical mechanics 87
6.1 The initial state of the universe 88
6.2 Mierostates and macrostates of molecules 89
6. $ The connection of entropy to mierostates 91
6.4 The constant a: Introducing the partition function 93
6.5 Using the partition function to derive thermodynamic functions 94
6.6 Distribution functions for gases 96
6.7 Quantum statistics for particle distributions 98
6.8 The Maxwell-Boltzmann speed distribution 102
6.9 Derivation of the ideal gas law 103
6.10 Deriving the Sackur-Tetrode equation for entropy of a monatomic gas 104
6.11 The partition function of a diatomic molecule 106
6.12 Contributions of each degree of freedom to thermodynamic functions 106
6.13 The total partition function and thermodynamic functions 111
6.14 Polyatomic molecules 11 ^
Exercises 115
Endnotes HO
Further reading 110
7 First law of thermodynamics
7.1 Some definitions and fundamental concepts in thermodynamics
7.2 Laws of thermodynamics
7.1 Internal energy and the first law
7.4 Work
7.5 Intensive and extensive variables
7.6 Heat
7.7 Non-ideal behavior changes the work
7.8 Heat capacity
7.9 Temperature dependence of Cp
7.10 Internal energy change at constant volume
7.11 Enthalpy
117
118
118
119
121
123
124
125
126
127
129
130
Contents ix
7.12 Relationship between Cv and Cp and partial differentials 131
7.13 Reversible adiabatic expansion/compression 133
Exercises 136
Endnotes ¡33
Further reading 13g
8 Second law of thermodynamics 139
8.1 The second law of thermodynamics 140
8.2 Thermodynamics of a hurricane 141
8.3 Heat engines, refrigeration, and heat pumps 145
8.4 Definition of entropy 148
8.5 Calculating changes in entropy 150
8.6 Maxwell s relations 152
8.7 Calculating the natural direction of change 154
Exercises 157
Endnotes 159
Further reading 159
9 Third law of thermodynamics and temperature dependence of heat capacity, enthalpy and entropy 160
9.1 When and why does a system change? 160
9.2 Natural variables of internal energy 161
9.3 Helmholtz and Gibbs energies 162
9.4 Standard molar Gibbs energies 163
9.5 Properties of the Gibbs energy 164
9.6 The temperature dependence of ATCp and H 168
9.7 Third law of thermodynamics 170
9.8 The unattainability of absolute zero 171
9.9 Absolute entropies 172
9.10 Entropy changes in chemical reactions 173
9.11 Calculating ArS° at any temperature I75
Exercises 177
Further reading 180
10 Thermochemistry: The role of heat in chemical and physical changes 181
10.1 Stoichiometry and extent of reaction *8^
10.2 Standard enthalpy change 182
10.3 Calorimetry *84
I 87
10.4 Phase transitions
] 90
10.5 Bond dissociation and atomization
10.6 Solution 1 ^1
192
] 0.7 Enthalpy of formation
192
10.8 Hess s law
10.9 Reaction enthalpy from enthalpies of formation 1 i} ’
10.10 Calculating enthalpy of reaction from enthalpies of combustion 194
10 11 The magnitude of reaction enthalpy 1 ’՝
r. . 196
Exercises
Further reading
11 Chemical equilibrium 201
11.1 Chemical potential and Gibbs energy of a reaction mixture 201
11.2 The Gibbs energy and equilibrium composition 202
11.3 The response of equilibria to change 204
x Contents
] 1.4 Equilibrium constants and associated calculations 209
11.5 Acid-base equilibria 212
I 1.6 Dissolution and precipitation of salts 216
11.7 Formation constants of complexes 219
1 1.8 Thermodynamics of self-assembly 222
Exercises 224
Endnote 228
Further reading 228
12 Phase stability and phase transitions 229
12.1 Phase diagrams and the relative stability of solids, liquids, and gases 229
12.2 What determines relative phase stability? 232
12.3 The p-T phase diagram 234
12.4 The Gibbs phase rule 237
12.5 Theoretical basis for the p-T phase diagram 238
12.6 Clausius-Clapeyron equation 240
! 2.7 Surface tension 242
12.8 Nucleation 246
12.9 Construction of a liquid-vapor phase diagram at constant pressure 230
12.10 Polymers: Phase separation and the glass transition 252
Exercises 254
Endnotes 255
Further reading 256
13 Solutions and mixtures: Nonelectrolytes 257
13.1 Ideal solution and the standard state 258
1 3.2 Partial molar volume 258
13.3 Partial molar Gibbs energy = chemical potential 259
13.4 The chemical potential of a mixture and AmixG 261
13.5 Activity 263
13.6 Measurement of activity 264
13.7 Classes of solutions and their properties 269
13.8 Colligative properties 223
13.9 Solubility of polymers 277
13.10 Supercritical C02 279
Exercises 2^1
Endnote 282
Further reading 282
14 Solutions of electrolytes 283
14.1 Why salts dissolve 283
14.2 Ions in solution 284
14.3 The thermodynamic properties of ions in solution 287
14.4 The activity of ions in solution 289
14.5 Debye-Hiickel theory 290
14.6 Use of activities in equilibrium calculations 292
14.7 Charge transport
798
Exercises z
799
Further reading
Contents xi
15 Electrochemistry: The chemistry of free charge exchange 300
15.1 Introduction to electrochemistry 301
15.2 The electrochemical potential 306
15.3 Electrochemical cells 310
15.4 Potential difference of an electrochemical cell 312
15.5 Surface charge and potential 318
15.6 Relating work functions to the electrochemical series 319
15.7 Applications of standard potentials 321
15.8 Biological oxidation and proton-coupled electron transfer 326
Exercises 329
Endnotes 331
Further reading 332
16 Empirical chemical kinetics
16.1 What is chemical kinetics?
16.2 Rates of reaction and rate equations
16.3 Elementary versus composite reactions
16.4 Kinetics and thermodynamics
16.5 Kinetics of specific orders
16.6 Reaction rate determination
16.7 Methods of determining reaction order
16.8 Reversible reactions and the connection of rate constants to equilibrium constants
16.9 Temperature dependence of rates and the rate constant
16.10 Microscopic reversibility and detailed balance
16.11 Rate-determining step (RDS)
Exercises
Endnotes
Further reading
333
333
335
336
337
338
345
346
348
350
353
354
355
359
359
17 Reaction dynamics I: Mechanisms and rates
17.1 Linking empirical kinetics to reaction dynamics
17.2 Hard- sphere collision theory
17.3 Activation energy and the transition state
17.4 Transition-state theory (TST)
17.5 Composite reactions and mechanisms
17.6 The rate of unimolecular reactions
17.7 Desorption kinetics
17.8 Langmuir (direct) adsorption
17.9 Precursor-mediated adsorption
17.10 Adsorption isotherms
17.11 Surmounting activation barriers
Exercises
Endnotes
Further reading
360
360
361
364
366
368
372
374
378
380
381
382
386
389
390
18 Reaction dynamics II: Catalysis, photochemistry and charge transfer
18.1 Catalysis
18.2 Heterogeneous catalysis
18.3 Acid-base catalysis
18.4 Enzyme catalysis
18.5 Chain reactions
18.6 Explosions
391
392
393
402
403
407
410
xii C ontcius
15.7 Photochemical reactions 411
18.8 Charge transfer and electrochemical dynamics 415
Exercises 428
lindnoles 431
hurt her reading 431
19 Developing quantum mechanical intuition 433
PM Classical electromagnetic waves 434
10.2 Classical mechanics to quantum mechanics 443
DM Necessity for an understanding of quantum mechanics 444
10.4 Quantum nature of light 448
j 0.5 Wave-particle duality 449
10.6 The Bohr atom 453
lixerciscs 458
lindnoles 460
further reading 461
20 The quantum mechanical description of nature 462
20.1 What determines if a quantum description is necessary? 463
20.2 The postulates of quantum mechanics 463
20.3 Wavefunctions 464
20.4 The Schrôdinger equation 467
20.5 Operators and eigenvalues 469
20.6 Solving the Schrodinger equation 471
20.7 Expectation values 475
20.8 Orthonormality and superposition 477
20.9 Dirac notation 480
20.10 Developing quantum intuition 481
Exercises 486
Endnotes 488
Further reading 488
21 Model quantum systems 489
21. i Particle in a box 490
21.2 Quantum tunneling 495
21.3 Vibrational motion 497
21.4 Angular momentum 500
Exercises 511
Endnotes 513
Further reading 513
22 Atomic structure 514
22.1 The hydrogenl atom 515
22.2 How do you make it better? the Dirac equation 518
22.3 Atomic orbitals 520
22.4 Many-electron atoms 524
22.5 Ground and excited states of He 528
22.6 Slater-Condon theory for approximating atomic energy levels 530
22.7 Electron configurations 533
Exercises 536
Endnotes 538
Further reading 538
Contents xiii
23 Introduction to spectroscopy and atomic spectroscopy 539
23.1 Fundamentals of spectroscopy 540
23.2 Time-dependent perturbation theory and spectral transitions 544
23.3 The Beer-Lambert law 547
23.4 Electronic spectra of atoms 550
23.5 Spin-orbit coupling 551
23.6 Russell-Saunders (LS) coupling 554
23.7 j/-coupling 559
23.8 Selection rules for atomic spectroscopy 560
23.9 Photoelectron spectroscopy 561
Exercises 566
Endnotes 569
Further reading 569
24 Molecular bonding and structure 570
24.1 Born-Oppenheimer approximation 571
24.2 Valence bond theory 573
24.3 Molecular orbital theory 576
24.4 The hydrogen molecular ion H+ 577
24.5 Solving the H2 Schrodinger equation 580
24.6 Homonuclear diatomic molecules 585
24.7 Heteronuclear diatomic molecules 588
24.8 The variational principle in molecular orbital calculations 591
24.9 Polyatomic molecules: The Hiickel approximation 593
24.10 Density functional theory (DFT) 597
Exercises 598
Endnotes 60
Further reading 6^1
25 Molecular spectroscopy and excited-state dynamics: Diatomics
25.1 Introduction to molecular spectroscopy
25.2 Pure rotational spectra of molecules
25.3 Rovibrational spectra of molecules
25.4 Raman spectroscopy
25.5 Electronic spectra of molecules
25.6 Excited-state population dynamics
25.7 Electron collisions with molecules
Exercises
Endnotes
Further reading
602
603
604
609
614
617
622
628
629
632
633
26 Polyatomic molecules and group theory
26.1 Absorption and emission by polyatomics
26.2 Electronic and vibronic selection rules
26.3 Molecular symmetry
26.4 Point groups
26.5 Character tables
26.6 Dipole moments
26.7 Rovibrational spectroscopy of polyatomic molecules
26.8 Excited-state dynamics
Exercises
634
635
637
641
645
647
650
652
656
665
xiv Contents
Endnotes 667
Further reading 667
27 Light-matter interactions: Lasers, laser spectroscopy, and photodynamics 668
27.1 Lasers 669
27.2 Harmonic generation (SHG and SFG) 673
27.3 Multiphoton absorption spectroscopy 675
27.4 Cavity ring-down spectroscopy 682
27.5 Femtochemistry 685
27.6 Beyond perturbation theory limit: High harmonic generation 688
27.7 Attosecond physics 690
27.8 Photosynthesis 691
27.9 Color and vision 694
Exercises 697
Endnotes 698
Further reading 699
Appendix 1 Basic calculus and trigonometry 700
Appendix 2 The method of undetermined multipliers 703
Appendix 3 Stirling s theorem 705
Appendix 4 Density of states of a particle in a box 706
Appendix 5 Black-body radiation: Treating radiation as a photon gas 708
Appendix 6 Definitions of symbols used in quantum mechanics and quantum chemistry 710
Appendix 7 Character tables 712
Appendix 8 Periodic behavior 714
Appendix 9 Thermodynamic parameters 717
Index
719
PHYSICAL CHEMISTRY
HOW CHEMISTRY WORKS
Kurt W. Kolasinski
Department of Chemistry, West Chester University, USA
Much of chemistry is motivated by asking, “How?” How do I make a primary alcohol? React a Grignard reagent with formaldehyde.
Physical chemistry is motivated by asking, “Why?” The Grignard reagent and formaldehyde follow a molecular dance known
as a reaction mechanism in which stronger bonds are made at the expense of weaker bonds. If you are interested in asking
why and not just how, then you need to understand physical chemistry.
Physical Chemistry: How Chemistry Works takes a fresh approach to teaching in physical chemistry. This modern textbook
is designed to excite and engage undergraduate chemistry students and prepare them for how they will employ physical
chemistry in real life. The student-friendly approach and practical, contemporary examples facilitate an understanding of the
physical chemical aspects of any system, allowing students of inorganic chemistry, organic chemistry, analytical chemistry and
biochemistry to be fluent in the essentials of physical chemistry in order to understand synthesis, intermolecular interactions
and materials properties. For students who are deeply interested In the subject of physical chemistry, the textbook facilitates
further study by connecting them to the frontiers of research.
o Provides students with the physical and mathematical machinery to understand the physical chemical aspects of any
system.
0 Integrates regular examples drawn from the literature, from contemporary issues and research, to engage students with
relevant and illustrative details.
0 Important topics are introduced and returned to in later chapters: key concepts are reinforced and discussed in more depth
as students acquire more tools.
0 Chapters begin with a preview of important concepts and conclude with a summary of important equations.
o Each chapter includes worked examples and exercises: discussion questions, simple equation manipulation questions, and
problem-solving exercises.
0 Accompanied by supplementary online material: worked examples for students and a solutions manual for instructors.
o Written by an experienced instructor, researcher and author in physical chemistry, with a voice and perspective that is
pedagogical and engaging.
|
any_adam_object | 1 |
author | Kolasinski, Kurt W. |
author_GND | (DE-588)138439060 |
author_facet | Kolasinski, Kurt W. |
author_role | aut |
author_sort | Kolasinski, Kurt W. |
author_variant | k w k kw kwk |
building | Verbundindex |
bvnumber | BV043673639 |
callnumber-first | Q - Science |
callnumber-label | QD453 |
callnumber-raw | QD453.3 |
callnumber-search | QD453.3 |
callnumber-sort | QD 3453.3 |
callnumber-subject | QD - Chemistry |
classification_rvk | VE 5000 VE 5010 |
ctrlnum | (OCoLC)966294073 (DE-599)BVBBV043673639 |
dewey-full | 541 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541 |
dewey-search | 541 |
dewey-sort | 3541 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02020nam a2200421 c 4500</leader><controlfield tag="001">BV043673639</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191025 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">160716s2017 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1118751124</subfield><subfield code="9">1-118-75112-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118751121</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-1-118-75112-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)966294073</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043673639</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD453.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 5000</subfield><subfield code="0">(DE-625)147104:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 5010</subfield><subfield code="0">(DE-625)147105:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kolasinski, Kurt W.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138439060</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physical chemistry</subfield><subfield code="b">how chemistry works</subfield><subfield code="c">Kurt W. Kolasinski, Department of Chemistry, West Chester University, USA</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester, West Sussex</subfield><subfield code="b">Wiley</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 726 Seiten</subfield><subfield code="b">Illustrationen, Diagramme (teilweise farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry, Physical and theoretical</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physikalische Chemie</subfield><subfield code="0">(DE-588)4045959-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Physikalische Chemie</subfield><subfield code="0">(DE-588)4045959-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="1" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-1-118-75120-6</subfield></datafield><datafield tag="776" ind1="1" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-1-118-75121-3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029086718&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029086718&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029086718</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV043673639 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:32:09Z |
institution | BVB |
isbn | 1118751124 9781118751121 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029086718 |
oclc_num | 966294073 |
open_access_boolean | |
owner | DE-11 DE-703 DE-19 DE-BY-UBM DE-634 |
owner_facet | DE-11 DE-703 DE-19 DE-BY-UBM DE-634 |
physical | xvii, 726 Seiten Illustrationen, Diagramme (teilweise farbig) |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Wiley |
record_format | marc |
spelling | Kolasinski, Kurt W. Verfasser (DE-588)138439060 aut Physical chemistry how chemistry works Kurt W. Kolasinski, Department of Chemistry, West Chester University, USA Chichester, West Sussex Wiley 2017 xvii, 726 Seiten Illustrationen, Diagramme (teilweise farbig) txt rdacontent n rdamedia nc rdacarrier Chemistry, Physical and theoretical Physikalische Chemie (DE-588)4045959-7 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Physikalische Chemie (DE-588)4045959-7 s DE-604 Erscheint auch als Online-Ausgabe, EPUB 978-1-118-75120-6 Erscheint auch als Online-Ausgabe, PDF 978-1-118-75121-3 Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029086718&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029086718&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Kolasinski, Kurt W. Physical chemistry how chemistry works Chemistry, Physical and theoretical Physikalische Chemie (DE-588)4045959-7 gnd |
subject_GND | (DE-588)4045959-7 (DE-588)4123623-3 |
title | Physical chemistry how chemistry works |
title_auth | Physical chemistry how chemistry works |
title_exact_search | Physical chemistry how chemistry works |
title_full | Physical chemistry how chemistry works Kurt W. Kolasinski, Department of Chemistry, West Chester University, USA |
title_fullStr | Physical chemistry how chemistry works Kurt W. Kolasinski, Department of Chemistry, West Chester University, USA |
title_full_unstemmed | Physical chemistry how chemistry works Kurt W. Kolasinski, Department of Chemistry, West Chester University, USA |
title_short | Physical chemistry |
title_sort | physical chemistry how chemistry works |
title_sub | how chemistry works |
topic | Chemistry, Physical and theoretical Physikalische Chemie (DE-588)4045959-7 gnd |
topic_facet | Chemistry, Physical and theoretical Physikalische Chemie Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029086718&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029086718&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kolasinskikurtw physicalchemistryhowchemistryworks |