Big data: principles and paradigms
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam ; Boston ; Heidelberg ; London ; New York ; Oxford ; Paris ; San Diego ; San Francisco ; Singapore ; Sydney ; Tokyo
Morgan Kaufmann
[2016]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xxv, 468 Seiten Illustrationen |
ISBN: | 9780128053942 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043644863 | ||
003 | DE-604 | ||
005 | 20160831 | ||
007 | t | ||
008 | 160628s2016 a||| |||| 00||| eng d | ||
020 | |a 9780128053942 |9 978-0-12-805394-2 | ||
035 | |a (OCoLC)956320515 | ||
035 | |a (DE-599)BVBBV043644863 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-91G |a DE-739 |a DE-573 | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
084 | |a DAT 620f |2 stub | ||
245 | 1 | 0 | |a Big data |b principles and paradigms |c edited by Rajkumar Buyya (The University of Melbourne and Manjrasoft Pty Ltd, Australia), Rodrigo N. Calheiros (The University of Melbourne, Australia), Amir Vahid Dastjerdi (The University of Melbourne, Australia) |
264 | 1 | |a Amsterdam ; Boston ; Heidelberg ; London ; New York ; Oxford ; Paris ; San Diego ; San Francisco ; Singapore ; Sydney ; Tokyo |b Morgan Kaufmann |c [2016] | |
300 | |a xxv, 468 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Buyya, Rajkumar |d 1970- |e Sonstige |0 (DE-588)122453905 |4 oth | |
700 | 1 | |a Calheiros, Rodrigo N. |e Sonstige |4 oth | |
700 | 1 | |a Dastjerdi, Amir Vahid |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029058596&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029058596 |
Datensatz im Suchindex
_version_ | 1804176388297588736 |
---|---|
adam_text | Contents
List of Contributors.......................................................................xv
About the Editors.........................................................................xix
Preface...................................................................................xxi
Acknowledgments...........................................................................xxv
PARTI BIS DATA SCIENCE_____________________________________________________________________
CHAPTER 1 BDA=ML · CC.......................................................................3
1.1 Introduction................................................................3
1.2 A Historical Review of Big Data............................................4
1.2.1 The Origin of Big Data...............................................4
1.2.2 Debates of Big Data Implication......................................5
1.3 Historical Interpretation of Big Data......................................7
1.3.1 Methodology for Defining Big Data.....................................7
1.3.2 Different Attributes of Definitions...................................7
1.3.3 Summary of 7 Types Definitions of Big Data...........................10
1.3.4 Motivations Behind the Definitions...................................10
1.4 Defining Big Data From 3Vs to 32Vs.........................................11
1.4.1 Data Domain..........................................................11
1.4.2 Business Intelligent (BI) Domain.....................................11
1.4.3 Statistics Domain....................................................13
1.4.4 32 Vs Definition and Big Data Venn Diagram...........................13
1.5 Big Data Analytics and Machine Learning....................................14
1.5.1 Big Data Analytics...................................................14
1.5.2 Machine Learning.....................................................15
1.6 Big Data Analytics and Cloud Computing.....................................18
1.7 Hadoop, HDFS, MapReduce, Spark, and Flink..................................18
1.7.1 Google File System (GFS) and HDFS....................................20
1.7.2 MapReduce............................................................24
1.7.3 The Origin of the Hadoop Project.....................................25
1.7.4 Spark and Spark Stack................................................27
1.7.5 Flink and Other Data Process Engines.................................27
1.7.6 Summary of Hadoop and Its Ecosystems.................................32
1.8 ML 4-CC BDA and Guidelines.................................................34
1.9 Conclusion.................................................................35
References.................................................................35
V
vi Contents
CHAPTER 2 Real-Time Analytics 39
2.1 Introduction.................................................................39
2.2 Computing Abstractions for Real-Time Analytics..............................40
2.3 Characteristics of Real-Time Systems........................................41
2.3.1 Low Latency............................................................42
2.3.2 High Availability......................................................42
2.3.3 Horizontal Scalability.................................................43
2.4 Real-Time Processing for Big Data — Concepts and Platforms..................43
2.4.1 Event................................................................ 43
2.4.2 Event Processing.......................................................44
2.4.3 Event Stream Processing and Data Stream Processing.....................44
2.4.4 Complex Event Processing...............................................44
2.4.5 Event Type.............................................................45
2.4.6 Event Pattern..........................................................45
2.5 Data Stream Processing Platforms............................................45
2.5.1 Spark..................................................................46
2.5.2 Storm................................................................ 47
2.5.3 Kafka..................................................................47
2.5.4 Flume..................................................................48
2.5.5 Amazon Kinesis.........................................................48
2.6 Data Stream Analytics Platforms.............................................48
2.6.1 Query-Based EPSs.......................................................48
2.6.2 Rule-Oriented EPSs.....................................................49
2.6.3 Programmatic EPSs......................................................50
2.7 Data Analysis and Analytic Techniques.......................................53
2.7.1 Data Analysis in General...............................................53
2.7.2 Data Analysis for Stream Applications..................................53
2.8 Finance Domain Requirements and a Case Study................................54
2.8.1 Real-Time Analytics in Finance Domain..................................54
2.8.2 Selected Scenarios.....................................................55
2.8.3 CEP Application as a Case Study........................................55
2.9 Future Research Challenges..................................................58
References...................................................................59
CHAPTER 3 Big Data Analytics for Social Media............................................... 63
3.1 Introduction.................................................................63
3.2 NLP and Its Applications....................................................63
3.2.1 Language Detection.....................................................64
3.2.2 Named Entity Recognition...............................................68
3.3 Text Mining.................................................................72
Contents vil
3.3.1 Sentiment Analysis..................................................72
3.3.2 Trending Topics.....................................................77
3.3.3 Recommender Systems................................................ 81
3.4 Anomaly Detection........................................................85
Acknowledgments...........................................................88
References................................................................89
CHAPTER 4 Deep Learning and Us Parallelization......................................95
4.1 Introduction..............................................................95
4.1.1 Application Background..............................................95
4.1.2 Performance Demands for Deep Learning...............................96
4.1.3 Existing Parallel Frameworks of Deep Learning.......................96
4.2 Concepts and Categories of Deep Learning.................................96
4.2.1 Deep Learning.......................................................96
4.2.2 Mainstream Deep Learning Models.....................................99
4.3 Parallel Optimization for Deep Learning.................................104
4.3.1 Convolutional Architecture for Fast Feature
Embedding...........................................................104
4.3.2 DistBelief.........................................................Ill
4.3.3 Deep Learning Based on Multi-GPUs..................................112
4.4 Discussions.............................................................115
4.4.1 Grand Challenges of Deep Learning in Big Data......................115
4.4.2 Future Directions..................................................116
References...............................................................117
CHAPTER 5 Characterization and Traversal of Large Real-World
Networks.................................................................119
5.1 Introduction.............................................................119
5.2 Background..............................................................120
5.3 Characterization and Measurement........................................121
5.4 Efficient Complex Network Traversal.....................................124
5.4.1 HPC Traversal of Large Networks....................................124
5.4.2 Algorithms for Accelerating AS-BFS on GPU..........................125
5.4.3 Performance Study of AS-BFS on GPU’s...............................126
5.5 ¿-Core-Based Partitioning for Heterogeneous Graph Processing............128
5.5.1 Graph Partitioning for Heterogeneous Computing.....................129
5.5.2 ¿-Core-Based Complex-Network Unbalanced Bisection..................129
5.6 Future Directions.......................................................133
5.7 Conclusions..,..........................................................133
Acknowledgments..........................................................134
References...............................................................134
viii Contents
PART II BIG DATA INFRASTRUCTURES AND PLATFORMS________________________________________
CHAPTER 6 Database Techniques for Big Data.........................................139
6.1 Introduction........................................................139
6.2 Background..........................................................139
6.2.1 Navigational Data Models.......................................139
6.2.2 Relational Data Models.........................................140
6.3 NoSQL Movement.................................................... 143
6.4 NoSQL Solutions for Big Data Management.............................144
6.5 NoSQL Data Models...................................................150
6.5.1 Key-Value Stores...............................................150
6.5.2 Column-Based Stores............................................151
6.5.3 Graph-Based Stores.............................................153
6.5.4 Document-Based Stores..........................................154
6.6 Future Directions...................................................156
6.7 Conclusions.........................................................157
References...........................................................157
CHAPTER 7 Resource Management in Big Data Processing Systems.......................i6i
7.1 Introduction........................................................161
7.2 Types of Resource Management........................................162
7.2.1 CPU and Memory Resource Management.............................162
7.2.2 Storage Resource Management....................................163
7.2.3 Network Resource Management.................................. 163
7.3 Big Data Processing Systems and Platforms...........................163
7.3.1 Hadoop.........................................................163
7.3.2 Dryad..........................................................164
7.3.3 Pregel.........................................................164
7.3.4 Storm..........................................................164
7.3.5 Spark..........................................................165
7.3.6 Summary........................................................165
7.4 Single-Resource Management in the Cloud.............................166
7.4.1 Desired Resource Allocation Properties.........................166
7.4.2 Problems for Existing Fairness Policies........................167
7.4.3 Long-Term Resource Allocation Policy...........................168
7.4.4 Experimental Evaluation........................................170
7.5 Multiresource Management in the Cloud...............................171
7.5.1 Resource Allocation Model......................................172
7.5.2 Multiresource Fair Sharing Issues..............................174
7.5.3 Reciprocal Resource Fairness...................................175
7.5.4 Experimental Evaluation........................................179
Contents ix
7.6 Related Work on Resource Management....................................182
7.6.1 Resource Utilization Optimization..................................182
7.6.2 Power and Energy Cost Saving Optimization..........................182
7.6.3 Monetary Cost Optimization.........................................182
7.6.4 Fairness Optimization..............................................183
7.7 Open Problems...........................................................183
7.7.1 SLA Guarantee for Applications.....................................183
7.7.2 Various Computation Models and Systems.............................183
7.7.3 Exploiting Emerging Hardware.......................................184
7.8 Summary.................................................................184
References...............................................................184
CHAPTER 8 Local Resource Consumption Shaping: A Case for MapReduce.....................189
8.1 Introduction............................................................189
8.2 Motivation..............................................................191
8.2.1 Pitfalls of Fair Resource Sharing.................................192
8.3 Local Resource Shaper...................................................194
8.3.1 Design Philosophy..................................................194
8.3.2 Splitter...........................................................195
8.3.3 The Interleave MapReduce Scheduler.................................195
8.4 Evaluation..............................................................198
8.4.1 Experiments With Hadoop Lx.........................................198
8.4.2 Experiments With Hadoop 2.x........................................204
8.5 Related Work............................................................210
8.6 Conclusions.............................................................211
Appendix CPU Utilization With Different Slot Configurations and LRS......212
References...............................................................213
CHAPTER 9 System Optimization for Big Data Processing...................................215
9.1 Introduction.............................................................215
9.2 Basic Framework of the Hadoop Ecosystem.................................217
9.3 Parallel Computation Framework: MapReduce...............................218
9.3.1 Improvements of MapReduce Framework................................218
9.3.2 Optimization for Task Scheduling and Load Balancing of MapReduce..219
9.4 Job Scheduling of Hadoop................................................220
9.4.1 Built-In Scheduling Algorithms of Hadoop...........................220
9.4.2 Improvement of the Hadoop Job Scheduling Algorithm.................221
9.4.3 Improvement of the Hadoop Job Management Framework.................223
9.5 Performance Optimization of HDFS........................................224
9.5.1 Small File Performance Optimization................................224
9.5.2 HDFS Security Optimization.........................................226
x Contents
9.6 Performance Optimization of HBase.....................................228
9.6.1 HBase Framework, Storage, and Application Optimization...........228
9.6.2 Load Balancing of HBase..........................................229
9.6.3 Optimization of HBase Configuration..............................230
9.7 Performance Enhancement of Hadoop System...............................230
9.7.1 Efficiency Optimization of Hadoop.................................231
9.7.2 Availability Optimization of Hadoop...............................232
9.8 Conclusions and Future Directions.................................. 233
References..............................................................233
CHAPTER 10 Packing Algorithms for Big Data Replay
on Multicore............................................................239
10.1 Introduction............................................................239
10.2 Performance B ottlenecks...............................................241
10.2.1 Hadoop/MapReduce Performance Bottlenecks.........................241
10.2.2 Performance Bottlenecks Under Parallel Loads.....................243
10.2.3 Parameter Spaces for Storage and Shared Memory..................244
10.2.4 Main Storage Performance.........................................245
10.2.5 Shared Memory Performance........................................248
10.3 The Big Data Replay Method......................................... 250
10.3.1 The Replay Method................................................250
10.3.2 Jobs as Sketches on a Timeline...................................251
10.3.3 Performance Bottlenecks Under Replay.............................252
10.4 Packing Algorithms.....................................................253
10.4.1 Shared Memory Performance Tricks.................................253
10.4.2 Big Data Replay at Scale.........................................255
10.4.3 Practical Packing Models.........................................256
10.5 Performance Analysis...................................................256
10.5.1 Hotspot Distributions............................................256
10.5.2 Modeling Methodology.............................................258
10.5.3 Processing Overhead Versus Bottlenecks...........................259
10.5.4 Control Grain for Drop Versus Drag Models.......................261
10.6 Summary and Future Directions........................................ 262
References..............................................................264
PART III BIG DATA SECURITY AND PRIVACY____________________________________________________
CHAPTER 11 Spatial Privacy Challenges in Social Networks...............................269
11.1 Introduction............................................................269
11.2 Background.............................................................269
11.3 Spatial Aspects of Social Networks.....................................271
Contents xi
11.4 Cloud-Based Big Data Infrastructure.......................................273
11.5 Spatial Privacy Case Studies..............................................275
11.6 Conclusions...............................................................281
Acknowledgments............................................................282
References.................................................................282
CHAPTER 12 Security and Privacy in Big Data................................................285
12.1 Introduction...............................................................285
12.2 Secure Queries Over Encrypted Big Data.....................................287
12.2.1 System Model........................................................287
12.2.2 Threat Model and Attack Model.......................................288
12.2.3 Secure Query Scheme in Clouds.......................................289
12.2.4 Security Definition of Index-Based Secure Query Techniques..........291
12.2.5 Implementations of Index-Based Secure Query Techniques..............291
12.3 Other Big Data Security....................................................295
12.3.1 Digital Watermarking................................................295
12.3.2 Self-Adaptive Risk Access Control...................................296
12.4 Privacy on Correlated Big Data.............................................296
12.4.1 Correlated Data in Big Data.........................................296
12.4.2 Anonymity...........................................................298
12.4.3 Differential Privacy................................................300
12.5 Future Directions..........................................................304
12.6 Conclusions................................................................305
References.................................................................305
CHAPTER 13 Location Inferring in Internet of Things and Big Data...........................309
13.1 Introduction...............................................................309
13.2 Device-Based Sensing Using Big Data........................................310
13.2.1 Introduction........................................................310
13.2.2 Approach Overview...................................................310
13.2.3 Trajectories Matching...............................................311
13.2.4 Establishing the Mapping Between Floor Plan and RSS Readings........314
13.2.5 User Localization...................................................318
13.2.6 Graph Matching Based Tracking.......................................318
13.2.7 Evaluation..........................................................318
13.3 Device-Free Sensing Using Big Data.........................................319
13.3.1 Customer Behavior Identification....................................319
13.3.2 Human Object Estimation.............................................328
13.4 Conclusion.................................................................334
Acknowledgements...........................................................334
References.................................................................334
xii Contents
PART IV BIG DATA APPLICATIONS______________________________________________________________
CHAPTER 14 A Framework for Mining Thai Public Opinions.............................339
14.1 Introduction............................................................339
14.2 XDOM....................................................................340
14.2.1 Data Sources.....................................................340
14.2.2 DOM System Architecture..........................................341
14.2.3 MapReduce Framework..............................................342
14.2.4 Sentiment Analysis...............................................343
14.2.5 Clustering-Based Summarization Framework.........................344
14.2.6 Influencer Analysis..............................................349
14.2.7 AskDOM: Mobile Application.......................................350
14.3 Implementation..........................................................350
14.3.1 Server...........................................................350
14.3.2 Core Service.....................................................351
14.3.3 I/O.......................................................... 351
14.4 Validation......................................................... .352
14.4.1 Validation Parameter.............................................352
14.4.2 Validation method................................................352
14.4.3 Validation results...............................................352
14.5 Case Studies............................................................353
14.5.1 Political Opinion: #prayforthailand..............................353
14.5.2 Bangkok Traffic Congestion Ranking...............................353
14.6 Summary and Conclusions.................................................354
Acknowledgments.........................................................354
References............................................................ 355
CHAPTER 15 A Case Study in Big Data Analytics: Exploring Twitter
Sentiment Analysis and the Weather......................................357
15.1 Background..............................................................357
15.2 Big Data System Components..............................................358
15.2.1 System Back-End Architecture.....................................358
15.2.2 System Front-End Architecture................................ 359
15.2.3 Software Stack...................................................360
15.3 Machine-Learning Methodology............................................360
15.3.1 Tweets Sentiment Analysis........................................361
15.3.2 Weather and Emotion Correlation Analysis.........................371
15.4 System Implementation...................................................373
15.4.1 Home Page........................................................373
15.4.2 Sentiment Pages..................................................374
15.4.3 Weather Pages....................................................374
Contents xiii
15.5 Key Findings.............................................................378
15.5.1 Time Series.......................................................378
15.5.2 Analysis with Hourly Weather Data.................................378
15.5.3 Analysis with Daily Weather Data..................................380
15.5.4 DBSCAN Cluster Algorithm..........................................382
15.5.5 Straightforward Weather Impact on Emotion.........................383
15.6 Summary and Conclusions..................................................384
Acknowledgments..........................................................387
References...............................................................387
CHAPTER 16 Dynamic Uncertainty-Based Analytics for Caching Performance
Improvements in Mobile Broadband Wireless Networks.......................389
16.1 Introduction.............................................................389
16.1.1 Big Data Concerns.................................................391
16.1.2 Key Focus Areas...................................................391
16.2 Background...............................................................392
16.2.1 Cellular Network and VoD..........................................392
16.2.2 Markov Processes..................................................393
16.3 Related Work.............................................................395
16.4 VoD Architecture.........................................................396
16.5 Overview.................................................................398
16.6 Data Generation..........................................................399
16.7 Edge and Core Components.................................................400
16.8 INCA Caching Algorithm...................................................401
16.9 QoE Estimation...........................................................403
16.10 Theoretical Framework....................................................403
16.11 Experiments and Results..................................................404
16.11.1 Cache Hits With Nu? Nc, NM and k.................................405
16.11.2 QoE Impact With Prefetch Bandwidth...............................407
16.11.3 User Satisfaction With Prefetch Bandwidth........................409
16.12 Synthetic Dataset........................................................409
16.12.1 INCA Hit Gain....................................................410
16.12.2 QoE Performance..................................................410
16.12.3 Satisfied Users..................................................412
16.13 Conclusions and Future Directions........................................413
References...............................................................414
CHAPTER 17 Big Data Analytics on a Smart Grid: Mining PMU Data for
Event and Anomaly Detection..............................................417
17.1 Introduction.............................................................417
17.2 Smart Grid With PMUs and PDCs............................................418
xiv Contents
17.3 Improving Traditional Workflow..........................................418
17.4 Characterizing Normal Operation.........................................419
17.5 Identifying Unusual Phenomena...........................................420
17.6 Identifying Known Events................................................423
17.7 Related Efforts.........................................................426
17.8 Conclusion and Future Directions........................................427
Acknowledgments.........................................................428
References..............................................................428
CHAPTER 18 eScience and Big Data Workflows in Clouds:
A Taxonomy and Survey...................................................431
18.1 Introduction............................................................431
18.2 Background............................................................ 432
18.2.1 History........................................................ 432
18.2.2 Grid-Based eScience..............................................434
18.2.3 Cloud Computing..................................................435
18.3 Taxonomy and Review of eScience Services in the Cloud...................436
18.3.1 Infrastructure...................................................437
18.3.2 Ownership........................................................437
18.3.3 Application......................................................438
18.3.4 Processing Tools............................................... 439
18.3.5 Storage..........................................................439
18.3.6 Security.........................................................440
18.3.7 Service Models...................................................441
18.3.8 Collaboration....................................................441
18.4 Resource Provisioning for eScience Workflows in Clouds..................442
18.4.1 Motivation.......................................................442
18.4.2 Our Solution.....................................................445
18.5 Open Problems...........................................................451
18.6 Summary.................................................................452
References..............................................................452
Index
457
|
any_adam_object | 1 |
author_GND | (DE-588)122453905 |
building | Verbundindex |
bvnumber | BV043644863 |
classification_rvk | ST 530 |
classification_tum | DAT 620f |
ctrlnum | (OCoLC)956320515 (DE-599)BVBBV043644863 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01675nam a2200349 c 4500</leader><controlfield tag="001">BV043644863</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160831 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">160628s2016 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128053942</subfield><subfield code="9">978-0-12-805394-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)956320515</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043644863</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 620f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big data</subfield><subfield code="b">principles and paradigms</subfield><subfield code="c">edited by Rajkumar Buyya (The University of Melbourne and Manjrasoft Pty Ltd, Australia), Rodrigo N. Calheiros (The University of Melbourne, Australia), Amir Vahid Dastjerdi (The University of Melbourne, Australia)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam ; Boston ; Heidelberg ; London ; New York ; Oxford ; Paris ; San Diego ; San Francisco ; Singapore ; Sydney ; Tokyo</subfield><subfield code="b">Morgan Kaufmann</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxv, 468 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buyya, Rajkumar</subfield><subfield code="d">1970-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)122453905</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Calheiros, Rodrigo N.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dastjerdi, Amir Vahid</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029058596&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029058596</subfield></datafield></record></collection> |
id | DE-604.BV043644863 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:31:23Z |
institution | BVB |
isbn | 9780128053942 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029058596 |
oclc_num | 956320515 |
open_access_boolean | |
owner | DE-83 DE-91G DE-BY-TUM DE-739 DE-573 |
owner_facet | DE-83 DE-91G DE-BY-TUM DE-739 DE-573 |
physical | xxv, 468 Seiten Illustrationen |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Morgan Kaufmann |
record_format | marc |
spelling | Big data principles and paradigms edited by Rajkumar Buyya (The University of Melbourne and Manjrasoft Pty Ltd, Australia), Rodrigo N. Calheiros (The University of Melbourne, Australia), Amir Vahid Dastjerdi (The University of Melbourne, Australia) Amsterdam ; Boston ; Heidelberg ; London ; New York ; Oxford ; Paris ; San Diego ; San Francisco ; Singapore ; Sydney ; Tokyo Morgan Kaufmann [2016] xxv, 468 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Big Data (DE-588)4802620-7 gnd rswk-swf Big Data (DE-588)4802620-7 s DE-604 Buyya, Rajkumar 1970- Sonstige (DE-588)122453905 oth Calheiros, Rodrigo N. Sonstige oth Dastjerdi, Amir Vahid Sonstige oth Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029058596&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Big data principles and paradigms Big Data (DE-588)4802620-7 gnd |
subject_GND | (DE-588)4802620-7 |
title | Big data principles and paradigms |
title_auth | Big data principles and paradigms |
title_exact_search | Big data principles and paradigms |
title_full | Big data principles and paradigms edited by Rajkumar Buyya (The University of Melbourne and Manjrasoft Pty Ltd, Australia), Rodrigo N. Calheiros (The University of Melbourne, Australia), Amir Vahid Dastjerdi (The University of Melbourne, Australia) |
title_fullStr | Big data principles and paradigms edited by Rajkumar Buyya (The University of Melbourne and Manjrasoft Pty Ltd, Australia), Rodrigo N. Calheiros (The University of Melbourne, Australia), Amir Vahid Dastjerdi (The University of Melbourne, Australia) |
title_full_unstemmed | Big data principles and paradigms edited by Rajkumar Buyya (The University of Melbourne and Manjrasoft Pty Ltd, Australia), Rodrigo N. Calheiros (The University of Melbourne, Australia), Amir Vahid Dastjerdi (The University of Melbourne, Australia) |
title_short | Big data |
title_sort | big data principles and paradigms |
title_sub | principles and paradigms |
topic | Big Data (DE-588)4802620-7 gnd |
topic_facet | Big Data |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029058596&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT buyyarajkumar bigdataprinciplesandparadigms AT calheirosrodrigon bigdataprinciplesandparadigms AT dastjerdiamirvahid bigdataprinciplesandparadigms |