Course in real analysis:
Functions of One Variable The Real Number System From Natural Numbers to Real Numbers Algebraic Properties of R Order Structure of R Completeness Property of R Mathematical Induction Euclidean Space Numerical Sequences Limits of Sequences Monotone Sequences Subsequences. Cauchy Sequences Limit Infer...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
[2015]
|
Schriftenreihe: | A Chapman & Hall book
|
Schlagworte: | |
Zusammenfassung: | Functions of One Variable The Real Number System From Natural Numbers to Real Numbers Algebraic Properties of R Order Structure of R Completeness Property of R Mathematical Induction Euclidean Space Numerical Sequences Limits of Sequences Monotone Sequences Subsequences. Cauchy Sequences Limit Inferior and Limit Superior Limits and Continuity on R Limit of a Function Limits Inferior and Superior Continuous Functions Some Properties of Continuous Functions Uniform Continuity Differentiation on R Definition of Derivative. Examples The Mean Value Theorem Convex Functions Inverse Functions L'Hospital's Rule Taylor's Theorem on R Newton's Method Riemann Integration on R The Riemann-Darboux Integral Properties of the Integral Evaluation of the Integral Stirling's Formula Integral Mean Value Theorems Estimation of the Integral Improper Integrals A Deeper Look at Riemann Integrability Functions of Bounded Variation The Riemann-Stieltjes Integral Numerical Infinite Series Definition and Examples Series with Nonnegative Terms More Refined Convergence Tests Absolute and Conditional Convergence Double Sequences and Series Sequences and Series of Functions Convergence of Sequences of Functions Properties of the Limit Function Convergence of Series of Functions Power Series Functions of Several Variables Metric Spaces Definitions and Examples Open and Closed Sets Closure, Interior, and Boundary Limits and Continuity Compact Sets The Arzelà-Ascoli Theorem Connected Sets The Stone-Weierstrass Theorem Baire's Theorem Differentiation on RnDefinition of the Derivative Properties of the Differential Further Properties of the Derivative The Inverse Function Theorem The Implicit Function Theorem Higher Order Partial DerivativesHigher Order Differentials. Taylor's Theorem on Rn Optimization Lebesgue Measure on Rn Some General Measure Theory Lebesgue Outer Measure |
Beschreibung: | xxiii, 589 Seiten Diagramme |
ISBN: | 9781482219272 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV043639162 | ||
003 | DE-604 | ||
005 | 20230417 | ||
007 | t | ||
008 | 160623s2015 |||| |||| 00||| eng d | ||
020 | |a 9781482219272 |c book and ebook |9 978-1-4822-1927-2 | ||
035 | |a (OCoLC)911322453 | ||
035 | |a (DE-599)BVBBV043639162 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
082 | 0 | |a 515 | |
084 | |a SK 420 |0 (DE-625)143238: |2 rvk | ||
100 | 1 | |a Junghenn, Hugo D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Course in real analysis |c Hugo D. Junghenn |
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c [2015] | |
300 | |a xxiii, 589 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a A Chapman & Hall book | |
520 | |a Functions of One Variable The Real Number System From Natural Numbers to Real Numbers Algebraic Properties of R Order Structure of R Completeness Property of R Mathematical Induction Euclidean Space Numerical Sequences Limits of Sequences Monotone Sequences Subsequences. Cauchy Sequences Limit Inferior and Limit Superior Limits and Continuity on R Limit of a Function Limits Inferior and Superior Continuous Functions Some Properties of Continuous Functions Uniform Continuity Differentiation on R Definition of Derivative. Examples The Mean Value Theorem Convex Functions Inverse Functions L'Hospital's Rule Taylor's Theorem on R Newton's Method Riemann Integration on R The Riemann-Darboux Integral Properties of the Integral Evaluation of the Integral Stirling's Formula Integral Mean Value Theorems Estimation of the Integral Improper Integrals A Deeper Look at Riemann Integrability Functions of Bounded Variation The Riemann-Stieltjes Integral Numerical Infinite Series Definition and Examples Series with Nonnegative Terms More Refined Convergence Tests Absolute and Conditional Convergence Double Sequences and Series Sequences and Series of Functions Convergence of Sequences of Functions Properties of the Limit Function Convergence of Series of Functions Power Series Functions of Several Variables Metric Spaces Definitions and Examples Open and Closed Sets Closure, Interior, and Boundary Limits and Continuity Compact Sets The Arzelà-Ascoli Theorem Connected Sets The Stone-Weierstrass Theorem Baire's Theorem Differentiation on RnDefinition of the Derivative Properties of the Differential Further Properties of the Derivative The Inverse Function Theorem The Implicit Function Theorem Higher Order Partial DerivativesHigher Order Differentials. Taylor's Theorem on Rn Optimization Lebesgue Measure on Rn Some General Measure Theory Lebesgue Outer Measure | ||
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Reelle Analysis |0 (DE-588)4627581-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reelle Analysis |0 (DE-588)4627581-2 |D s |
689 | 0 | |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029053018 |
Datensatz im Suchindex
_version_ | 1804176378406371328 |
---|---|
any_adam_object | |
author | Junghenn, Hugo D. |
author_facet | Junghenn, Hugo D. |
author_role | aut |
author_sort | Junghenn, Hugo D. |
author_variant | h d j hd hdj |
building | Verbundindex |
bvnumber | BV043639162 |
classification_rvk | SK 420 |
ctrlnum | (OCoLC)911322453 (DE-599)BVBBV043639162 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02919nam a2200349zc 4500</leader><controlfield tag="001">BV043639162</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230417 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">160623s2015 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781482219272</subfield><subfield code="c">book and ebook</subfield><subfield code="9">978-1-4822-1927-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)911322453</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043639162</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 420</subfield><subfield code="0">(DE-625)143238:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Junghenn, Hugo D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Course in real analysis</subfield><subfield code="c">Hugo D. Junghenn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiii, 589 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Chapman & Hall book</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Functions of One Variable The Real Number System From Natural Numbers to Real Numbers Algebraic Properties of R Order Structure of R Completeness Property of R Mathematical Induction Euclidean Space Numerical Sequences Limits of Sequences Monotone Sequences Subsequences. Cauchy Sequences Limit Inferior and Limit Superior Limits and Continuity on R Limit of a Function Limits Inferior and Superior Continuous Functions Some Properties of Continuous Functions Uniform Continuity Differentiation on R Definition of Derivative. Examples The Mean Value Theorem Convex Functions Inverse Functions L'Hospital's Rule Taylor's Theorem on R Newton's Method Riemann Integration on R The Riemann-Darboux Integral Properties of the Integral Evaluation of the Integral Stirling's Formula Integral Mean Value Theorems Estimation of the Integral Improper Integrals A Deeper Look at Riemann Integrability Functions of Bounded Variation The Riemann-Stieltjes Integral Numerical Infinite Series Definition and Examples Series with Nonnegative Terms More Refined Convergence Tests Absolute and Conditional Convergence Double Sequences and Series Sequences and Series of Functions Convergence of Sequences of Functions Properties of the Limit Function Convergence of Series of Functions Power Series Functions of Several Variables Metric Spaces Definitions and Examples Open and Closed Sets Closure, Interior, and Boundary Limits and Continuity Compact Sets The Arzelà-Ascoli Theorem Connected Sets The Stone-Weierstrass Theorem Baire's Theorem Differentiation on RnDefinition of the Derivative Properties of the Differential Further Properties of the Derivative The Inverse Function Theorem The Implicit Function Theorem Higher Order Partial DerivativesHigher Order Differentials. Taylor's Theorem on Rn Optimization Lebesgue Measure on Rn Some General Measure Theory Lebesgue Outer Measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle Analysis</subfield><subfield code="0">(DE-588)4627581-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reelle Analysis</subfield><subfield code="0">(DE-588)4627581-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029053018</subfield></datafield></record></collection> |
id | DE-604.BV043639162 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:31:14Z |
institution | BVB |
isbn | 9781482219272 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029053018 |
oclc_num | 911322453 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | xxiii, 589 Seiten Diagramme |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | CRC Press |
record_format | marc |
series2 | A Chapman & Hall book |
spelling | Junghenn, Hugo D. Verfasser aut Course in real analysis Hugo D. Junghenn Boca Raton ; London ; New York CRC Press [2015] xxiii, 589 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier A Chapman & Hall book Functions of One Variable The Real Number System From Natural Numbers to Real Numbers Algebraic Properties of R Order Structure of R Completeness Property of R Mathematical Induction Euclidean Space Numerical Sequences Limits of Sequences Monotone Sequences Subsequences. Cauchy Sequences Limit Inferior and Limit Superior Limits and Continuity on R Limit of a Function Limits Inferior and Superior Continuous Functions Some Properties of Continuous Functions Uniform Continuity Differentiation on R Definition of Derivative. Examples The Mean Value Theorem Convex Functions Inverse Functions L'Hospital's Rule Taylor's Theorem on R Newton's Method Riemann Integration on R The Riemann-Darboux Integral Properties of the Integral Evaluation of the Integral Stirling's Formula Integral Mean Value Theorems Estimation of the Integral Improper Integrals A Deeper Look at Riemann Integrability Functions of Bounded Variation The Riemann-Stieltjes Integral Numerical Infinite Series Definition and Examples Series with Nonnegative Terms More Refined Convergence Tests Absolute and Conditional Convergence Double Sequences and Series Sequences and Series of Functions Convergence of Sequences of Functions Properties of the Limit Function Convergence of Series of Functions Power Series Functions of Several Variables Metric Spaces Definitions and Examples Open and Closed Sets Closure, Interior, and Boundary Limits and Continuity Compact Sets The Arzelà-Ascoli Theorem Connected Sets The Stone-Weierstrass Theorem Baire's Theorem Differentiation on RnDefinition of the Derivative Properties of the Differential Further Properties of the Derivative The Inverse Function Theorem The Implicit Function Theorem Higher Order Partial DerivativesHigher Order Differentials. Taylor's Theorem on Rn Optimization Lebesgue Measure on Rn Some General Measure Theory Lebesgue Outer Measure Mathematical analysis Reelle Analysis (DE-588)4627581-2 gnd rswk-swf Reelle Analysis (DE-588)4627581-2 s DE-604 |
spellingShingle | Junghenn, Hugo D. Course in real analysis Mathematical analysis Reelle Analysis (DE-588)4627581-2 gnd |
subject_GND | (DE-588)4627581-2 |
title | Course in real analysis |
title_auth | Course in real analysis |
title_exact_search | Course in real analysis |
title_full | Course in real analysis Hugo D. Junghenn |
title_fullStr | Course in real analysis Hugo D. Junghenn |
title_full_unstemmed | Course in real analysis Hugo D. Junghenn |
title_short | Course in real analysis |
title_sort | course in real analysis |
topic | Mathematical analysis Reelle Analysis (DE-588)4627581-2 gnd |
topic_facet | Mathematical analysis Reelle Analysis |
work_keys_str_mv | AT junghennhugod courseinrealanalysis |