Spatial and Spatio-temporal Bayesian Models with R - INLA:
Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Somerset
Wiley
2015
|
Ausgabe: | 1st ed |
Schlagworte: | |
Zusammenfassung: | Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (323 pages) |
ISBN: | 9781118950210 9781118326558 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043619875 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160616s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781118950210 |9 978-1-118-95021-0 | ||
020 | |a 9781118326558 |c Print |9 978-1-118-32655-8 | ||
035 | |a (ZDB-30-PQE)EBC2006109 | ||
035 | |a (ZDB-89-EBL)EBL2006109 | ||
035 | |a (ZDB-38-EBR)ebr11041459 | ||
035 | |a (OCoLC)900278105 | ||
035 | |a (DE-599)BVBBV043619875 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 519.5/42 | |
100 | 1 | |a Blangiardo, Marta |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spatial and Spatio-temporal Bayesian Models with R - INLA |
250 | |a 1st ed | ||
264 | 1 | |a Somerset |b Wiley |c 2015 | |
264 | 4 | |c © 2014 | |
300 | |a 1 online resource (323 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | |a Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations | ||
650 | 4 | |a Asymptotic distribution (Probability theory) | |
650 | 4 | |a Bayesian statistical decision theory | |
650 | 4 | |a R (Computer program language) | |
650 | 4 | |a Spatial analysis (Statistics) | |
700 | 1 | |a Cameletti, Michela |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Blangiardo, Marta |t Spatial and Spatio-temporal Bayesian Models with R - INLA |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029033934 |
Datensatz im Suchindex
_version_ | 1804176359504740352 |
---|---|
any_adam_object | |
author | Blangiardo, Marta |
author_facet | Blangiardo, Marta |
author_role | aut |
author_sort | Blangiardo, Marta |
author_variant | m b mb |
building | Verbundindex |
bvnumber | BV043619875 |
collection | ZDB-30-PQE |
ctrlnum | (ZDB-30-PQE)EBC2006109 (ZDB-89-EBL)EBL2006109 (ZDB-38-EBR)ebr11041459 (OCoLC)900278105 (DE-599)BVBBV043619875 |
dewey-full | 519.5/42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/42 |
dewey-search | 519.5/42 |
dewey-sort | 3519.5 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02167nmm a2200433zc 4500</leader><controlfield tag="001">BV043619875</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160616s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118950210</subfield><subfield code="9">978-1-118-95021-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118326558</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-118-32655-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC2006109</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL2006109</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr11041459</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)900278105</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043619875</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/42</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blangiardo, Marta</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatial and Spatio-temporal Bayesian Models with R - INLA</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Somerset</subfield><subfield code="b">Wiley</subfield><subfield code="c">2015</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (323 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial analysis (Statistics)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cameletti, Michela</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Blangiardo, Marta</subfield><subfield code="t">Spatial and Spatio-temporal Bayesian Models with R - INLA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029033934</subfield></datafield></record></collection> |
id | DE-604.BV043619875 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:30:56Z |
institution | BVB |
isbn | 9781118950210 9781118326558 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029033934 |
oclc_num | 900278105 |
open_access_boolean | |
physical | 1 online resource (323 pages) |
psigel | ZDB-30-PQE |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Wiley |
record_format | marc |
spelling | Blangiardo, Marta Verfasser aut Spatial and Spatio-temporal Bayesian Models with R - INLA 1st ed Somerset Wiley 2015 © 2014 1 online resource (323 pages) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations Asymptotic distribution (Probability theory) Bayesian statistical decision theory R (Computer program language) Spatial analysis (Statistics) Cameletti, Michela Sonstige oth Erscheint auch als Druck-Ausgabe Blangiardo, Marta Spatial and Spatio-temporal Bayesian Models with R - INLA |
spellingShingle | Blangiardo, Marta Spatial and Spatio-temporal Bayesian Models with R - INLA Asymptotic distribution (Probability theory) Bayesian statistical decision theory R (Computer program language) Spatial analysis (Statistics) |
title | Spatial and Spatio-temporal Bayesian Models with R - INLA |
title_auth | Spatial and Spatio-temporal Bayesian Models with R - INLA |
title_exact_search | Spatial and Spatio-temporal Bayesian Models with R - INLA |
title_full | Spatial and Spatio-temporal Bayesian Models with R - INLA |
title_fullStr | Spatial and Spatio-temporal Bayesian Models with R - INLA |
title_full_unstemmed | Spatial and Spatio-temporal Bayesian Models with R - INLA |
title_short | Spatial and Spatio-temporal Bayesian Models with R - INLA |
title_sort | spatial and spatio temporal bayesian models with r inla |
topic | Asymptotic distribution (Probability theory) Bayesian statistical decision theory R (Computer program language) Spatial analysis (Statistics) |
topic_facet | Asymptotic distribution (Probability theory) Bayesian statistical decision theory R (Computer program language) Spatial analysis (Statistics) |
work_keys_str_mv | AT blangiardomarta spatialandspatiotemporalbayesianmodelswithrinla AT camelettimichela spatialandspatiotemporalbayesianmodelswithrinla |