Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators:
Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA).The self-contained treatment of selected...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Somerset
Wiley
2015
|
Ausgabe: | 1st ed |
Schriftenreihe: | Wiley Series in Probability and Statistics
v.997 |
Schlagworte: | |
Zusammenfassung: | Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA).The self-contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self-adjoint and non self-adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis.This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (364 pages) |
ISBN: | 9781118762561 9780470016916 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043619436 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160616s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781118762561 |9 978-1-118-76256-1 | ||
020 | |a 9780470016916 |c Print |9 978-0-470-01691-6 | ||
035 | |a (ZDB-30-PQE)EBC1991870 | ||
035 | |a (ZDB-89-EBL)EBL1991870 | ||
035 | |a (ZDB-38-EBR)ebr11033630 | ||
035 | |a (OCoLC)905348789 | ||
035 | |a (DE-599)BVBBV043619436 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 515.7 | |
100 | 1 | |a Hsing, Tailen |e Verfasser |4 aut | |
245 | 1 | 0 | |a Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators |
250 | |a 1st ed | ||
264 | 1 | |a Somerset |b Wiley |c 2015 | |
264 | 4 | |c © 2013 | |
300 | |a 1 online resource (364 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Wiley Series in Probability and Statistics |v v.997 | |
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | |a Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA).The self-contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self-adjoint and non self-adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis.This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course | ||
650 | 4 | |a Functional analysis | |
650 | 4 | |a Linear models (Statistics) | |
650 | 4 | |a Stochastic processes | |
650 | 0 | 7 | |a Funktionale Datenanalyse |0 (DE-588)4699227-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Linearer Operator |0 (DE-588)4167721-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Linearer Operator |0 (DE-588)4167721-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Funktionale Datenanalyse |0 (DE-588)4699227-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Eubank, Randall |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Hsing, Tailen |t Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029033495 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176359450214400 |
---|---|
any_adam_object | |
author | Hsing, Tailen |
author_facet | Hsing, Tailen |
author_role | aut |
author_sort | Hsing, Tailen |
author_variant | t h th |
building | Verbundindex |
bvnumber | BV043619436 |
collection | ZDB-30-PQE |
ctrlnum | (ZDB-30-PQE)EBC1991870 (ZDB-89-EBL)EBL1991870 (ZDB-38-EBR)ebr11033630 (OCoLC)905348789 (DE-599)BVBBV043619436 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03375nmm a2200529zcb4500</leader><controlfield tag="001">BV043619436</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160616s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118762561</subfield><subfield code="9">978-1-118-76256-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470016916</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-470-01691-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC1991870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1991870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr11033630</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905348789</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043619436</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hsing, Tailen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Somerset</subfield><subfield code="b">Wiley</subfield><subfield code="c">2015</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (364 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley Series in Probability and Statistics</subfield><subfield code="v">v.997</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA).The self-contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self-adjoint and non self-adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis.This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear models (Statistics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionale Datenanalyse</subfield><subfield code="0">(DE-588)4699227-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktionale Datenanalyse</subfield><subfield code="0">(DE-588)4699227-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eubank, Randall</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Hsing, Tailen</subfield><subfield code="t">Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029033495</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043619436 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:30:56Z |
institution | BVB |
isbn | 9781118762561 9780470016916 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029033495 |
oclc_num | 905348789 |
open_access_boolean | |
physical | 1 online resource (364 pages) |
psigel | ZDB-30-PQE |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Wiley |
record_format | marc |
series2 | Wiley Series in Probability and Statistics |
spelling | Hsing, Tailen Verfasser aut Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators 1st ed Somerset Wiley 2015 © 2013 1 online resource (364 pages) txt rdacontent c rdamedia cr rdacarrier Wiley Series in Probability and Statistics v.997 Description based on publisher supplied metadata and other sources Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA).The self-contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self-adjoint and non self-adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis.This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course Functional analysis Linear models (Statistics) Stochastic processes Funktionale Datenanalyse (DE-588)4699227-3 gnd rswk-swf Linearer Operator (DE-588)4167721-3 gnd rswk-swf Linearer Operator (DE-588)4167721-3 s 1\p DE-604 Funktionale Datenanalyse (DE-588)4699227-3 s 2\p DE-604 Eubank, Randall Sonstige oth Erscheint auch als Druck-Ausgabe Hsing, Tailen Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hsing, Tailen Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators Functional analysis Linear models (Statistics) Stochastic processes Funktionale Datenanalyse (DE-588)4699227-3 gnd Linearer Operator (DE-588)4167721-3 gnd |
subject_GND | (DE-588)4699227-3 (DE-588)4167721-3 |
title | Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators |
title_auth | Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators |
title_exact_search | Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators |
title_full | Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators |
title_fullStr | Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators |
title_full_unstemmed | Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators |
title_short | Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators |
title_sort | theoretical foundations of functional data analysis with an introduction to linear operators |
topic | Functional analysis Linear models (Statistics) Stochastic processes Funktionale Datenanalyse (DE-588)4699227-3 gnd Linearer Operator (DE-588)4167721-3 gnd |
topic_facet | Functional analysis Linear models (Statistics) Stochastic processes Funktionale Datenanalyse Linearer Operator |
work_keys_str_mv | AT hsingtailen theoreticalfoundationsoffunctionaldataanalysiswithanintroductiontolinearoperators AT eubankrandall theoreticalfoundationsoffunctionaldataanalysiswithanintroductiontolinearoperators |