Symmetry Analysis of Differential Equations: An Introduction
A self-contained introduction to the methods and techniques of symmetry analysis used to solve ODEs and PDEsSymmetry Analysis of Differential Equations: An Introduction presents an accessible approach to the uses of symmetry methods in solving both ordinary differential equations (ODEs) and partial...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Somerset
Wiley
2015
|
Ausgabe: | 1st ed |
Schlagworte: | |
Online-Zugang: | Buchcover |
Zusammenfassung: | A self-contained introduction to the methods and techniques of symmetry analysis used to solve ODEs and PDEsSymmetry Analysis of Differential Equations: An Introduction presents an accessible approach to the uses of symmetry methods in solving both ordinary differential equations (ODEs) and partial differential equations (PDEs). Providing comprehensive coverage, the book fills a gap in the literature by discussing elementary symmetry concepts and invariance, including methods for reducing the complexity of ODEs and PDEs in an effort to solve the associated problems. Thoroughly class-tested, the author presents classical methods in a systematic, logical, and well-balanced manner. As the book progresses, the chapters graduate from elementary symmetries and the invariance of algebraic equations, to ODEs and PDEs, followed by coverage of the nonclassical method and compatibility. Symmetry Analysis of Differential Equations: An Introduction also features: Detailed, step-by-step examples to guide readers through the methods of symmetry analysis End-of-chapter exercises, varying from elementary to advanced, with select solutions to aid in the calculation of the presented algorithmic methods Symmetry Analysis of Differential Equations: An Introduction is an ideal textbook for upper-undergraduate and graduate-level courses in symmetry methods and applied mathematics. The book is also a useful reference for professionals in science, physics, and engineering, as well as anyone wishing to learn about the use of symmetry methods in solving differential equations |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (286 pages) |
ISBN: | 9781118721445 9781118721407 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043615915 | ||
003 | DE-604 | ||
005 | 20160926 | ||
007 | cr|uuu---uuuuu | ||
008 | 160616s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781118721445 |9 978-1-118-72144-5 | ||
020 | |a 9781118721407 |c Print |9 978-1-118-72140-7 | ||
035 | |a (ZDB-30-PQE)EBC1895560 | ||
035 | |a (ZDB-89-EBL)EBL1895560 | ||
035 | |a (ZDB-38-EBR)ebr11004526 | ||
035 | |a (OCoLC)881387350 | ||
035 | |a (DE-599)BVBBV043615915 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 515/.353 | |
100 | 1 | |a Arrigo, Daniel J. |d 1960- |e Verfasser |0 (DE-588)1067544461 |4 aut | |
245 | 1 | 0 | |a Symmetry Analysis of Differential Equations |b An Introduction |
250 | |a 1st ed | ||
264 | 1 | |a Somerset |b Wiley |c 2015 | |
264 | 4 | |c © 2015 | |
300 | |a 1 online resource (286 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | |a A self-contained introduction to the methods and techniques of symmetry analysis used to solve ODEs and PDEsSymmetry Analysis of Differential Equations: An Introduction presents an accessible approach to the uses of symmetry methods in solving both ordinary differential equations (ODEs) and partial differential equations (PDEs). Providing comprehensive coverage, the book fills a gap in the literature by discussing elementary symmetry concepts and invariance, including methods for reducing the complexity of ODEs and PDEs in an effort to solve the associated problems. Thoroughly class-tested, the author presents classical methods in a systematic, logical, and well-balanced manner. As the book progresses, the chapters graduate from elementary symmetries and the invariance of algebraic equations, to ODEs and PDEs, followed by coverage of the nonclassical method and compatibility. Symmetry Analysis of Differential Equations: An Introduction also features: Detailed, step-by-step examples to guide readers through the methods of symmetry analysis End-of-chapter exercises, varying from elementary to advanced, with select solutions to aid in the calculation of the presented algorithmic methods Symmetry Analysis of Differential Equations: An Introduction is an ideal textbook for upper-undergraduate and graduate-level courses in symmetry methods and applied mathematics. The book is also a useful reference for professionals in science, physics, and engineering, as well as anyone wishing to learn about the use of symmetry methods in solving differential equations | ||
650 | 4 | |a Differential equations, Partial -- Textbooks | |
650 | 4 | |a Lie groups -- Study and teaching (Graduate) | |
650 | 4 | |a Lie groups -- Study and teaching (Higher) | |
650 | 4 | |a Lie groups -- Textbooks | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | 1 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Arrigo, Daniel J |t . Symmetry Analysis of Differential Equations : An Introduction |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029029974&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Buchcover |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029029974 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176358389055488 |
---|---|
any_adam_object | 1 |
author | Arrigo, Daniel J. 1960- |
author_GND | (DE-588)1067544461 |
author_facet | Arrigo, Daniel J. 1960- |
author_role | aut |
author_sort | Arrigo, Daniel J. 1960- |
author_variant | d j a dj dja |
building | Verbundindex |
bvnumber | BV043615915 |
collection | ZDB-30-PQE |
ctrlnum | (ZDB-30-PQE)EBC1895560 (ZDB-89-EBL)EBL1895560 (ZDB-38-EBR)ebr11004526 (OCoLC)881387350 (DE-599)BVBBV043615915 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03778nmm a2200529zc 4500</leader><controlfield tag="001">BV043615915</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160926 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160616s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118721445</subfield><subfield code="9">978-1-118-72144-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118721407</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-118-72140-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC1895560</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1895560</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr11004526</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)881387350</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043615915</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arrigo, Daniel J.</subfield><subfield code="d">1960-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1067544461</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetry Analysis of Differential Equations</subfield><subfield code="b">An Introduction</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Somerset</subfield><subfield code="b">Wiley</subfield><subfield code="c">2015</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (286 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A self-contained introduction to the methods and techniques of symmetry analysis used to solve ODEs and PDEsSymmetry Analysis of Differential Equations: An Introduction presents an accessible approach to the uses of symmetry methods in solving both ordinary differential equations (ODEs) and partial differential equations (PDEs). Providing comprehensive coverage, the book fills a gap in the literature by discussing elementary symmetry concepts and invariance, including methods for reducing the complexity of ODEs and PDEs in an effort to solve the associated problems. Thoroughly class-tested, the author presents classical methods in a systematic, logical, and well-balanced manner. As the book progresses, the chapters graduate from elementary symmetries and the invariance of algebraic equations, to ODEs and PDEs, followed by coverage of the nonclassical method and compatibility. Symmetry Analysis of Differential Equations: An Introduction also features: Detailed, step-by-step examples to guide readers through the methods of symmetry analysis End-of-chapter exercises, varying from elementary to advanced, with select solutions to aid in the calculation of the presented algorithmic methods Symmetry Analysis of Differential Equations: An Introduction is an ideal textbook for upper-undergraduate and graduate-level courses in symmetry methods and applied mathematics. The book is also a useful reference for professionals in science, physics, and engineering, as well as anyone wishing to learn about the use of symmetry methods in solving differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial -- Textbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups -- Study and teaching (Graduate)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups -- Study and teaching (Higher)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups -- Textbooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Arrigo, Daniel J</subfield><subfield code="t">. Symmetry Analysis of Differential Equations : An Introduction</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029029974&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Buchcover</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029029974</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV043615915 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:30:55Z |
institution | BVB |
isbn | 9781118721445 9781118721407 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029029974 |
oclc_num | 881387350 |
open_access_boolean | |
physical | 1 online resource (286 pages) |
psigel | ZDB-30-PQE |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Wiley |
record_format | marc |
spelling | Arrigo, Daniel J. 1960- Verfasser (DE-588)1067544461 aut Symmetry Analysis of Differential Equations An Introduction 1st ed Somerset Wiley 2015 © 2015 1 online resource (286 pages) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources A self-contained introduction to the methods and techniques of symmetry analysis used to solve ODEs and PDEsSymmetry Analysis of Differential Equations: An Introduction presents an accessible approach to the uses of symmetry methods in solving both ordinary differential equations (ODEs) and partial differential equations (PDEs). Providing comprehensive coverage, the book fills a gap in the literature by discussing elementary symmetry concepts and invariance, including methods for reducing the complexity of ODEs and PDEs in an effort to solve the associated problems. Thoroughly class-tested, the author presents classical methods in a systematic, logical, and well-balanced manner. As the book progresses, the chapters graduate from elementary symmetries and the invariance of algebraic equations, to ODEs and PDEs, followed by coverage of the nonclassical method and compatibility. Symmetry Analysis of Differential Equations: An Introduction also features: Detailed, step-by-step examples to guide readers through the methods of symmetry analysis End-of-chapter exercises, varying from elementary to advanced, with select solutions to aid in the calculation of the presented algorithmic methods Symmetry Analysis of Differential Equations: An Introduction is an ideal textbook for upper-undergraduate and graduate-level courses in symmetry methods and applied mathematics. The book is also a useful reference for professionals in science, physics, and engineering, as well as anyone wishing to learn about the use of symmetry methods in solving differential equations Differential equations, Partial -- Textbooks Lie groups -- Study and teaching (Graduate) Lie groups -- Study and teaching (Higher) Lie groups -- Textbooks Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Lie-Gruppe (DE-588)4035695-4 s Differentialgleichung (DE-588)4012249-9 s 2\p DE-604 Erscheint auch als Druck-Ausgabe Arrigo, Daniel J . Symmetry Analysis of Differential Equations : An Introduction SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029029974&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Buchcover 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Arrigo, Daniel J. 1960- Symmetry Analysis of Differential Equations An Introduction Differential equations, Partial -- Textbooks Lie groups -- Study and teaching (Graduate) Lie groups -- Study and teaching (Higher) Lie groups -- Textbooks Lie-Gruppe (DE-588)4035695-4 gnd Differentialgleichung (DE-588)4012249-9 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4012249-9 (DE-588)4151278-9 |
title | Symmetry Analysis of Differential Equations An Introduction |
title_auth | Symmetry Analysis of Differential Equations An Introduction |
title_exact_search | Symmetry Analysis of Differential Equations An Introduction |
title_full | Symmetry Analysis of Differential Equations An Introduction |
title_fullStr | Symmetry Analysis of Differential Equations An Introduction |
title_full_unstemmed | Symmetry Analysis of Differential Equations An Introduction |
title_short | Symmetry Analysis of Differential Equations |
title_sort | symmetry analysis of differential equations an introduction |
title_sub | An Introduction |
topic | Differential equations, Partial -- Textbooks Lie groups -- Study and teaching (Graduate) Lie groups -- Study and teaching (Higher) Lie groups -- Textbooks Lie-Gruppe (DE-588)4035695-4 gnd Differentialgleichung (DE-588)4012249-9 gnd |
topic_facet | Differential equations, Partial -- Textbooks Lie groups -- Study and teaching (Graduate) Lie groups -- Study and teaching (Higher) Lie groups -- Textbooks Lie-Gruppe Differentialgleichung Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029029974&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT arrigodanielj symmetryanalysisofdifferentialequationsanintroduction |