Machine Learning: A Theoretical Approach
This is the first comprehensive introduction to computational learning theory. The author's uniform presentation of fundamental results and their applications offers AI researchers a theoretical perspective on the problems they study. The book presents tools for the analysis of probabilistic mo...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Saint Louis
Elsevier Science
2014
|
Schlagworte: | |
Online-Zugang: | FAW01 |
Zusammenfassung: | This is the first comprehensive introduction to computational learning theory. The author's uniform presentation of fundamental results and their applications offers AI researchers a theoretical perspective on the problems they study. The book presents tools for the analysis of probabilistic models of learning, tools that crisply classify what is and is not efficiently learnable. After a general introduction to Valiant's PAC paradigm and the important notion of the Vapnik-Chervonenkis dimension, the author explores specific topics such as finite automata and neural networks. The presentation is intended for a broad audience--the author's ability to motivate and pace discussions for beginners has been praised by reviewers. Each chapter contains numerous examples and exercises, as well as a useful summary of important results. An excellent introduction to the area, suitable either for a first course, or as a component in general machine learning and advanced AI courses. Also an important reference for AI researchers |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (228 pages) |
ISBN: | 9780080510538 9781493305858 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043614302 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160616s2014 |||| o||u| ||||||eng d | ||
020 | |a 9780080510538 |9 978-0-08-051053-8 | ||
020 | |a 9781493305858 |c Print |9 978-1-4933-0585-8 | ||
035 | |a (ZDB-30-PQE)EBC1876693 | ||
035 | |a (ZDB-89-EBL)EBL1876693 | ||
035 | |a (ZDB-38-EBR)ebr10997142 | ||
035 | |a (OCoLC)892068012 | ||
035 | |a (DE-599)BVBBV043614302 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 006.3/1 | |
100 | 1 | |a Natarajan, Balas K. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine Learning |b A Theoretical Approach |
264 | 1 | |a Saint Louis |b Elsevier Science |c 2014 | |
264 | 4 | |c © 1991 | |
300 | |a 1 online resource (228 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | |a This is the first comprehensive introduction to computational learning theory. The author's uniform presentation of fundamental results and their applications offers AI researchers a theoretical perspective on the problems they study. The book presents tools for the analysis of probabilistic models of learning, tools that crisply classify what is and is not efficiently learnable. After a general introduction to Valiant's PAC paradigm and the important notion of the Vapnik-Chervonenkis dimension, the author explores specific topics such as finite automata and neural networks. The presentation is intended for a broad audience--the author's ability to motivate and pace discussions for beginners has been praised by reviewers. Each chapter contains numerous examples and exercises, as well as a useful summary of important results. An excellent introduction to the area, suitable either for a first course, or as a component in general machine learning and advanced AI courses. Also an important reference for AI researchers | ||
650 | 4 | |a Machine learning | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Natarajan, Balas K |t . Machine Learning : A Theoretical Approach |
912 | |a ZDB-30-PQE |a ZDB-33-ESD |a ZDB-33-EBS | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029028361 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.sciencedirect.com/science/book/9780080510538 |l FAW01 |p ZDB-33-ESD |q FAW_PDA_ESD |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176357564874752 |
---|---|
any_adam_object | |
author | Natarajan, Balas K. |
author_facet | Natarajan, Balas K. |
author_role | aut |
author_sort | Natarajan, Balas K. |
author_variant | b k n bk bkn |
building | Verbundindex |
bvnumber | BV043614302 |
collection | ZDB-30-PQE ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-30-PQE)EBC1876693 (ZDB-89-EBL)EBL1876693 (ZDB-38-EBR)ebr10997142 (OCoLC)892068012 (DE-599)BVBBV043614302 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02641nmm a2200445zc 4500</leader><controlfield tag="001">BV043614302</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160616s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080510538</subfield><subfield code="9">978-0-08-051053-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781493305858</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4933-0585-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC1876693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1876693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr10997142</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)892068012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043614302</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Natarajan, Balas K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning</subfield><subfield code="b">A Theoretical Approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Saint Louis</subfield><subfield code="b">Elsevier Science</subfield><subfield code="c">2014</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (228 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the first comprehensive introduction to computational learning theory. The author's uniform presentation of fundamental results and their applications offers AI researchers a theoretical perspective on the problems they study. The book presents tools for the analysis of probabilistic models of learning, tools that crisply classify what is and is not efficiently learnable. After a general introduction to Valiant's PAC paradigm and the important notion of the Vapnik-Chervonenkis dimension, the author explores specific topics such as finite automata and neural networks. The presentation is intended for a broad audience--the author's ability to motivate and pace discussions for beginners has been praised by reviewers. Each chapter contains numerous examples and exercises, as well as a useful summary of important results. An excellent introduction to the area, suitable either for a first course, or as a component in general machine learning and advanced AI courses. Also an important reference for AI researchers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Natarajan, Balas K</subfield><subfield code="t">. Machine Learning : A Theoretical Approach</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029028361</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9780080510538</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">FAW_PDA_ESD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043614302 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:30:54Z |
institution | BVB |
isbn | 9780080510538 9781493305858 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029028361 |
oclc_num | 892068012 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 online resource (228 pages) |
psigel | ZDB-30-PQE ZDB-33-ESD ZDB-33-EBS ZDB-33-ESD FAW_PDA_ESD |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Elsevier Science |
record_format | marc |
spelling | Natarajan, Balas K. Verfasser aut Machine Learning A Theoretical Approach Saint Louis Elsevier Science 2014 © 1991 1 online resource (228 pages) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources This is the first comprehensive introduction to computational learning theory. The author's uniform presentation of fundamental results and their applications offers AI researchers a theoretical perspective on the problems they study. The book presents tools for the analysis of probabilistic models of learning, tools that crisply classify what is and is not efficiently learnable. After a general introduction to Valiant's PAC paradigm and the important notion of the Vapnik-Chervonenkis dimension, the author explores specific topics such as finite automata and neural networks. The presentation is intended for a broad audience--the author's ability to motivate and pace discussions for beginners has been praised by reviewers. Each chapter contains numerous examples and exercises, as well as a useful summary of important results. An excellent introduction to the area, suitable either for a first course, or as a component in general machine learning and advanced AI courses. Also an important reference for AI researchers Machine learning Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 s 1\p DE-604 Erscheint auch als Druck-Ausgabe Natarajan, Balas K . Machine Learning : A Theoretical Approach 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Natarajan, Balas K. Machine Learning A Theoretical Approach Machine learning Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4193754-5 |
title | Machine Learning A Theoretical Approach |
title_auth | Machine Learning A Theoretical Approach |
title_exact_search | Machine Learning A Theoretical Approach |
title_full | Machine Learning A Theoretical Approach |
title_fullStr | Machine Learning A Theoretical Approach |
title_full_unstemmed | Machine Learning A Theoretical Approach |
title_short | Machine Learning |
title_sort | machine learning a theoretical approach |
title_sub | A Theoretical Approach |
topic | Machine learning Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Machine learning Maschinelles Lernen |
work_keys_str_mv | AT natarajanbalask machinelearningatheoreticalapproach |