Machine Learning: An Artificial Intelligence Approach, Volume III.
Machine Learning: An Artificial Intelligence Approach, Volume III presents a sample of machine learning research representative of the period between 1986 and 1989. The book is organized into six parts. Part One introduces some general issues in the field of machine learning. Part Two presents some...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Saint Louis
Elsevier Science
2014
|
Schlagworte: | |
Online-Zugang: | FAW01 TUM01 |
Zusammenfassung: | Machine Learning: An Artificial Intelligence Approach, Volume III presents a sample of machine learning research representative of the period between 1986 and 1989. The book is organized into six parts. Part One introduces some general issues in the field of machine learning. Part Two presents some new developments in the area of empirical learning methods, such as flexible learning concepts, the Protos learning apprentice system, and the WITT system, which implements a form of conceptual clustering. Part Three gives an account of various analytical learning methods and how analytic learning can be applied to various specific problems. Part Four describes efforts to integrate different learning strategies. These include the UNIMEM system, which empirically discovers similarities among examples; and the DISCIPLE multistrategy system, which is capable of learning with imperfect background knowledge. Part Five provides an overview of research in the area of subsymbolic learning methods. Part Six presents two types of formal approaches to machine learning. The first is an improvement over Mitchell's version space method; the second technique deals with the learning problem faced by a robot in an unfamiliar, deterministic, finite-state environment |
Beschreibung: | 1 online resource (836 pages) |
ISBN: | 9780080510552 9781322465531 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043614296 | ||
003 | DE-604 | ||
005 | 20170710 | ||
007 | cr|uuu---uuuuu | ||
008 | 160616s2014 |||| o||u| ||||||eng d | ||
020 | |a 9780080510552 |9 978-0-08-051055-2 | ||
020 | |a 9781322465531 |9 978-1-32246-553-1 | ||
035 | |a (ZDB-30-PQE)EBC1876687 | ||
035 | |a (ZDB-89-EBL)EBL1876687 | ||
035 | |a (ZDB-38-EBR)ebr10997189 | ||
035 | |a (OCoLC)893488404 | ||
035 | |a (DE-599)BVBBV043614296 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 006 | |
084 | |a ST 308 |0 (DE-625)143655: |2 rvk | ||
084 | |a DAT 708f |2 stub | ||
100 | 1 | |a Kodratoff, Yves |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine Learning |b An Artificial Intelligence Approach, Volume III. |
264 | 1 | |a Saint Louis |b Elsevier Science |c 2014 | |
264 | 4 | |c © 1990 | |
300 | |a 1 online resource (836 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Machine Learning: An Artificial Intelligence Approach, Volume III presents a sample of machine learning research representative of the period between 1986 and 1989. The book is organized into six parts. Part One introduces some general issues in the field of machine learning. Part Two presents some new developments in the area of empirical learning methods, such as flexible learning concepts, the Protos learning apprentice system, and the WITT system, which implements a form of conceptual clustering. Part Three gives an account of various analytical learning methods and how analytic learning can be applied to various specific problems. Part Four describes efforts to integrate different learning strategies. These include the UNIMEM system, which empirically discovers similarities among examples; and the DISCIPLE multistrategy system, which is capable of learning with imperfect background knowledge. Part Five provides an overview of research in the area of subsymbolic learning methods. Part Six presents two types of formal approaches to machine learning. The first is an improvement over Mitchell's version space method; the second technique deals with the learning problem faced by a robot in an unfamiliar, deterministic, finite-state environment | ||
650 | 4 | |a Künstliche Intelligenz | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Machine learning | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Michalski, Ryszard S. |d 1937-2007 |e Sonstige |0 (DE-588)11030196X |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-55860-119-2 |
912 | |a ZDB-30-PQE |a ZDB-33-ESD |a ZDB-26-MYL |a ZDB-33-EBS | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029028355 | ||
966 | e | |u http://www.sciencedirect.com/science/book/9780080510552 |l FAW01 |p ZDB-33-ESD |q FAW_PDA_ESD |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=1876687 |l TUM01 |p ZDB-26-MYL |q TUM_PDA_MIL_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176357558583296 |
---|---|
any_adam_object | |
author | Kodratoff, Yves |
author_GND | (DE-588)11030196X |
author_facet | Kodratoff, Yves |
author_role | aut |
author_sort | Kodratoff, Yves |
author_variant | y k yk |
building | Verbundindex |
bvnumber | BV043614296 |
classification_rvk | ST 308 |
classification_tum | DAT 708f |
collection | ZDB-30-PQE ZDB-33-ESD ZDB-26-MYL ZDB-33-EBS |
ctrlnum | (ZDB-30-PQE)EBC1876687 (ZDB-89-EBL)EBL1876687 (ZDB-38-EBR)ebr10997189 (OCoLC)893488404 (DE-599)BVBBV043614296 |
dewey-full | 006 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006 |
dewey-search | 006 |
dewey-sort | 16 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03068nmm a2200493zc 4500</leader><controlfield tag="001">BV043614296</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170710 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160616s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080510552</subfield><subfield code="9">978-0-08-051055-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781322465531</subfield><subfield code="9">978-1-32246-553-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC1876687</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1876687</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr10997189</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)893488404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043614296</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 308</subfield><subfield code="0">(DE-625)143655:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kodratoff, Yves</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning</subfield><subfield code="b">An Artificial Intelligence Approach, Volume III.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Saint Louis</subfield><subfield code="b">Elsevier Science</subfield><subfield code="c">2014</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (836 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Machine Learning: An Artificial Intelligence Approach, Volume III presents a sample of machine learning research representative of the period between 1986 and 1989. The book is organized into six parts. Part One introduces some general issues in the field of machine learning. Part Two presents some new developments in the area of empirical learning methods, such as flexible learning concepts, the Protos learning apprentice system, and the WITT system, which implements a form of conceptual clustering. Part Three gives an account of various analytical learning methods and how analytic learning can be applied to various specific problems. Part Four describes efforts to integrate different learning strategies. These include the UNIMEM system, which empirically discovers similarities among examples; and the DISCIPLE multistrategy system, which is capable of learning with imperfect background knowledge. Part Five provides an overview of research in the area of subsymbolic learning methods. Part Six presents two types of formal approaches to machine learning. The first is an improvement over Mitchell's version space method; the second technique deals with the learning problem faced by a robot in an unfamiliar, deterministic, finite-state environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Michalski, Ryszard S.</subfield><subfield code="d">1937-2007</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)11030196X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-55860-119-2</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-26-MYL</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029028355</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9780080510552</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">FAW_PDA_ESD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=1876687</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-26-MYL</subfield><subfield code="q">TUM_PDA_MIL_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043614296 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:30:54Z |
institution | BVB |
isbn | 9780080510552 9781322465531 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029028355 |
oclc_num | 893488404 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (836 pages) |
psigel | ZDB-30-PQE ZDB-33-ESD ZDB-26-MYL ZDB-33-EBS ZDB-33-ESD FAW_PDA_ESD ZDB-26-MYL TUM_PDA_MIL_Kauf |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Elsevier Science |
record_format | marc |
spelling | Kodratoff, Yves Verfasser aut Machine Learning An Artificial Intelligence Approach, Volume III. Saint Louis Elsevier Science 2014 © 1990 1 online resource (836 pages) txt rdacontent c rdamedia cr rdacarrier Machine Learning: An Artificial Intelligence Approach, Volume III presents a sample of machine learning research representative of the period between 1986 and 1989. The book is organized into six parts. Part One introduces some general issues in the field of machine learning. Part Two presents some new developments in the area of empirical learning methods, such as flexible learning concepts, the Protos learning apprentice system, and the WITT system, which implements a form of conceptual clustering. Part Three gives an account of various analytical learning methods and how analytic learning can be applied to various specific problems. Part Four describes efforts to integrate different learning strategies. These include the UNIMEM system, which empirically discovers similarities among examples; and the DISCIPLE multistrategy system, which is capable of learning with imperfect background knowledge. Part Five provides an overview of research in the area of subsymbolic learning methods. Part Six presents two types of formal approaches to machine learning. The first is an improvement over Mitchell's version space method; the second technique deals with the learning problem faced by a robot in an unfamiliar, deterministic, finite-state environment Künstliche Intelligenz Artificial intelligence Machine learning Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 s DE-604 Michalski, Ryszard S. 1937-2007 Sonstige (DE-588)11030196X oth Erscheint auch als Druck-Ausgabe 978-1-55860-119-2 |
spellingShingle | Kodratoff, Yves Machine Learning An Artificial Intelligence Approach, Volume III. Künstliche Intelligenz Artificial intelligence Machine learning Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4193754-5 |
title | Machine Learning An Artificial Intelligence Approach, Volume III. |
title_auth | Machine Learning An Artificial Intelligence Approach, Volume III. |
title_exact_search | Machine Learning An Artificial Intelligence Approach, Volume III. |
title_full | Machine Learning An Artificial Intelligence Approach, Volume III. |
title_fullStr | Machine Learning An Artificial Intelligence Approach, Volume III. |
title_full_unstemmed | Machine Learning An Artificial Intelligence Approach, Volume III. |
title_short | Machine Learning |
title_sort | machine learning an artificial intelligence approach volume iii |
title_sub | An Artificial Intelligence Approach, Volume III. |
topic | Künstliche Intelligenz Artificial intelligence Machine learning Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Künstliche Intelligenz Artificial intelligence Machine learning Maschinelles Lernen |
work_keys_str_mv | AT kodratoffyves machinelearninganartificialintelligenceapproachvolumeiii AT michalskiryszards machinelearninganartificialintelligenceapproachvolumeiii |