Statistical Reinforcement Learning: Modern Machine Learning Approaches
This book by Prof. Masashi Sugiyama covers the range of reinforcement learning algorithms from a fresh, modern perspective. With a focus on the statistical properties of estimating parameters for reinforcement learning, the book relates a number of different approaches across the gamut of learning s...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, PA
CRC Press
2015
|
Schlagworte: | |
Online-Zugang: | FWS01 FWS02 UER01 |
Zusammenfassung: | This book by Prof. Masashi Sugiyama covers the range of reinforcement learning algorithms from a fresh, modern perspective. With a focus on the statistical properties of estimating parameters for reinforcement learning, the book relates a number of different approaches across the gamut of learning scenarios.... It is a contemporary and welcome addition to the rapidly growing machine learning literature. Both beginner students and experienced researchers will find it to be an important source for understanding the latest reinforcement learning techniques.-Daniel D. Lee, GRASP Laboratory, School of Engineering and Applied Science, University of Pennsylvania |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (206 pages) |
ISBN: | 9781439856901 9781439856895 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043611331 | ||
003 | DE-604 | ||
005 | 20210126 | ||
007 | cr|uuu---uuuuu | ||
008 | 160616s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781439856901 |9 978-1-4398-5690-1 | ||
020 | |a 9781439856895 |c Print |9 978-1-4398-5689-5 | ||
035 | |a (ZDB-30-PQE)EBC1759550 | ||
035 | |a (ZDB-89-EBL)EBL1759550 | ||
035 | |a (ZDB-38-EBR)ebr11032989 | ||
035 | |a (OCoLC)908635287 | ||
035 | |a (DE-599)BVBBV043611331 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29 |a DE-863 |a DE-862 | ||
082 | 0 | |a 006.31 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Sugiyama, Masashi |d 1974- |e Verfasser |0 (DE-588)1077760604 |4 aut | |
245 | 1 | 0 | |a Statistical Reinforcement Learning |b Modern Machine Learning Approaches |
264 | 1 | |a Philadelphia, PA |b CRC Press |c 2015 | |
264 | 4 | |c © 2015 | |
300 | |a 1 online resource (206 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | |a This book by Prof. Masashi Sugiyama covers the range of reinforcement learning algorithms from a fresh, modern perspective. With a focus on the statistical properties of estimating parameters for reinforcement learning, the book relates a number of different approaches across the gamut of learning scenarios.... It is a contemporary and welcome addition to the rapidly growing machine learning literature. Both beginner students and experienced researchers will find it to be an important source for understanding the latest reinforcement learning techniques.-Daniel D. Lee, GRASP Laboratory, School of Engineering and Applied Science, University of Pennsylvania | ||
650 | 4 | |a Reinforcement learning | |
650 | 0 | 7 | |a Bestärkendes Lernen |g Künstliche Intelligenz |0 (DE-588)4825546-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operante Konditionierung |0 (DE-588)4172613-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bestärkendes Lernen |g Künstliche Intelligenz |0 (DE-588)4825546-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Operante Konditionierung |0 (DE-588)4172613-3 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Hachiya, Hirotaka |e Sonstige |4 oth | |
700 | 1 | |a Morimura, Tetsuro |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Sugiyama, Masashi |t Statistical Reinforcement Learning : Modern Machine Learning Approaches |z 978-1-4398-5689-5 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 9780429105364 |
912 | |a ZDB-7-TFC |a ZDB-30-PQE |a ZDB-38-EBR | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029025390 | ||
966 | e | |u https://doi.org/10.1201/b18188 |l FWS01 |p ZDB-7-TFC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1201/b18188 |l FWS02 |p ZDB-7-TFC |x Verlag |3 Volltext | |
966 | e | |u https://erlangen.ebookcentral.proquest.com/libCentral/FullRecord.aspx?p=1759550 |l UER01 |p ZDB-38-EBR |q UER_PDA_EBR_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 866969 |
---|---|
_version_ | 1806194138275643392 |
any_adam_object | |
author | Sugiyama, Masashi 1974- |
author_GND | (DE-588)1077760604 |
author_facet | Sugiyama, Masashi 1974- |
author_role | aut |
author_sort | Sugiyama, Masashi 1974- |
author_variant | m s ms |
building | Verbundindex |
bvnumber | BV043611331 |
classification_rvk | ST 300 |
collection | ZDB-7-TFC ZDB-30-PQE ZDB-38-EBR |
ctrlnum | (ZDB-30-PQE)EBC1759550 (ZDB-89-EBL)EBL1759550 (ZDB-38-EBR)ebr11032989 (OCoLC)908635287 (DE-599)BVBBV043611331 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02923nmm a2200541zc 4500</leader><controlfield tag="001">BV043611331</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210126 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160616s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439856901</subfield><subfield code="9">978-1-4398-5690-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439856895</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4398-5689-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC1759550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1759550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr11032989</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)908635287</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043611331</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sugiyama, Masashi</subfield><subfield code="d">1974-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1077760604</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical Reinforcement Learning</subfield><subfield code="b">Modern Machine Learning Approaches</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, PA</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (206 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book by Prof. Masashi Sugiyama covers the range of reinforcement learning algorithms from a fresh, modern perspective. With a focus on the statistical properties of estimating parameters for reinforcement learning, the book relates a number of different approaches across the gamut of learning scenarios.... It is a contemporary and welcome addition to the rapidly growing machine learning literature. Both beginner students and experienced researchers will find it to be an important source for understanding the latest reinforcement learning techniques.-Daniel D. Lee, GRASP Laboratory, School of Engineering and Applied Science, University of Pennsylvania</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reinforcement learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bestärkendes Lernen</subfield><subfield code="g">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4825546-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operante Konditionierung</subfield><subfield code="0">(DE-588)4172613-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bestärkendes Lernen</subfield><subfield code="g">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4825546-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Operante Konditionierung</subfield><subfield code="0">(DE-588)4172613-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hachiya, Hirotaka</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morimura, Tetsuro</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Sugiyama, Masashi</subfield><subfield code="t">Statistical Reinforcement Learning : Modern Machine Learning Approaches</subfield><subfield code="z">978-1-4398-5689-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">9780429105364</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-7-TFC</subfield><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-38-EBR</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029025390</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1201/b18188</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-7-TFC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1201/b18188</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-7-TFC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://erlangen.ebookcentral.proquest.com/libCentral/FullRecord.aspx?p=1759550</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-38-EBR</subfield><subfield code="q">UER_PDA_EBR_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043611331 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T16:02:39Z |
institution | BVB |
isbn | 9781439856901 9781439856895 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029025390 |
oclc_num | 908635287 |
open_access_boolean | |
owner | DE-29 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-29 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 online resource (206 pages) |
psigel | ZDB-7-TFC ZDB-30-PQE ZDB-38-EBR ZDB-38-EBR UER_PDA_EBR_Kauf |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | CRC Press |
record_format | marc |
spellingShingle | Sugiyama, Masashi 1974- Statistical Reinforcement Learning Modern Machine Learning Approaches Reinforcement learning Bestärkendes Lernen Künstliche Intelligenz (DE-588)4825546-4 gnd Operante Konditionierung (DE-588)4172613-3 gnd |
subject_GND | (DE-588)4825546-4 (DE-588)4172613-3 |
title | Statistical Reinforcement Learning Modern Machine Learning Approaches |
title_auth | Statistical Reinforcement Learning Modern Machine Learning Approaches |
title_exact_search | Statistical Reinforcement Learning Modern Machine Learning Approaches |
title_full | Statistical Reinforcement Learning Modern Machine Learning Approaches |
title_fullStr | Statistical Reinforcement Learning Modern Machine Learning Approaches |
title_full_unstemmed | Statistical Reinforcement Learning Modern Machine Learning Approaches |
title_short | Statistical Reinforcement Learning |
title_sort | statistical reinforcement learning modern machine learning approaches |
title_sub | Modern Machine Learning Approaches |
topic | Reinforcement learning Bestärkendes Lernen Künstliche Intelligenz (DE-588)4825546-4 gnd Operante Konditionierung (DE-588)4172613-3 gnd |
topic_facet | Reinforcement learning Bestärkendes Lernen Künstliche Intelligenz Operante Konditionierung |
work_keys_str_mv | AT sugiyamamasashi statisticalreinforcementlearningmodernmachinelearningapproaches AT hachiyahirotaka statisticalreinforcementlearningmodernmachinelearningapproaches AT morimuratetsuro statisticalreinforcementlearningmodernmachinelearningapproaches |