Solutions Manual to Accompany Classical Geometry: Euclidean, Transformational, Inversive, and Projective
Solutions Manual to accompany Classical Geometry: Euclidean, Transformational, Inversive, and Projective Written by well-known mathematical problem solvers, Classical Geometry: Euclidean, Transformational, Inversive, and Projective features up-to-date and applicable coverage of the wide spectrum of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Somerset
Wiley
2014
|
Ausgabe: | 1st ed |
Schlagworte: | |
Zusammenfassung: | Solutions Manual to accompany Classical Geometry: Euclidean, Transformational, Inversive, and Projective Written by well-known mathematical problem solvers, Classical Geometry: Euclidean, Transformational, Inversive, and Projective features up-to-date and applicable coverage of the wide spectrum of geometry and aids readers in learning the art of logical reasoning, modeling, and proof. With its reader-friendly approach, this undergraduate text features self-contained topical coverage and provides a large selection of solved exercises to aid in reader comprehension. Material in this text can be tailored for a one-, two-, or three-semester sequence |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (172 pages) |
ISBN: | 9781118903384 9781118903520 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043610569 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160616s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781118903384 |9 978-1-118-90338-4 | ||
020 | |a 9781118903520 |c Print |9 978-1-118-90352-0 | ||
035 | |a (ZDB-30-PQE)EBC1727722 | ||
035 | |a (ZDB-89-EBL)EBL1727722 | ||
035 | |a (ZDB-38-EBR)ebr10891093 | ||
035 | |a (OCoLC)883568141 | ||
035 | |a (DE-599)BVBBV043610569 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 516 | |
100 | 1 | |a Leonard, I. E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Solutions Manual to Accompany Classical Geometry |b Euclidean, Transformational, Inversive, and Projective |
250 | |a 1st ed | ||
264 | 1 | |a Somerset |b Wiley |c 2014 | |
264 | 4 | |c © 2014 | |
300 | |a 1 online resource (172 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | |a Solutions Manual to accompany Classical Geometry: Euclidean, Transformational, Inversive, and Projective Written by well-known mathematical problem solvers, Classical Geometry: Euclidean, Transformational, Inversive, and Projective features up-to-date and applicable coverage of the wide spectrum of geometry and aids readers in learning the art of logical reasoning, modeling, and proof. With its reader-friendly approach, this undergraduate text features self-contained topical coverage and provides a large selection of solved exercises to aid in reader comprehension. Material in this text can be tailored for a one-, two-, or three-semester sequence | ||
650 | 4 | |a Geometry | |
700 | 1 | |a Lewis, J. E. |e Sonstige |4 oth | |
700 | 1 | |a Liu, A. C. F. |e Sonstige |4 oth | |
700 | 1 | |a Tokarsky, G. W. |e Sonstige |4 oth | |
700 | 1 | |a Leonard, I E. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Leonard, I |t E.. Solutions Manual to Accompany Classical Geometry : Euclidean, Transformational, Inversive, and Projective |
912 | |a ZDB-30-PQE |a ZDB-38-ESG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029024628 |
Datensatz im Suchindex
_version_ | 1804176356001447936 |
---|---|
any_adam_object | |
author | Leonard, I. E. |
author_facet | Leonard, I. E. |
author_role | aut |
author_sort | Leonard, I. E. |
author_variant | i e l ie iel |
building | Verbundindex |
bvnumber | BV043610569 |
collection | ZDB-30-PQE ZDB-38-ESG |
ctrlnum | (ZDB-30-PQE)EBC1727722 (ZDB-89-EBL)EBL1727722 (ZDB-38-EBR)ebr10891093 (OCoLC)883568141 (DE-599)BVBBV043610569 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02161nmm a2200433zc 4500</leader><controlfield tag="001">BV043610569</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160616s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118903384</subfield><subfield code="9">978-1-118-90338-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118903520</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-118-90352-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC1727722</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1727722</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr10891093</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)883568141</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043610569</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leonard, I. E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solutions Manual to Accompany Classical Geometry</subfield><subfield code="b">Euclidean, Transformational, Inversive, and Projective</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Somerset</subfield><subfield code="b">Wiley</subfield><subfield code="c">2014</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (172 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Solutions Manual to accompany Classical Geometry: Euclidean, Transformational, Inversive, and Projective Written by well-known mathematical problem solvers, Classical Geometry: Euclidean, Transformational, Inversive, and Projective features up-to-date and applicable coverage of the wide spectrum of geometry and aids readers in learning the art of logical reasoning, modeling, and proof. With its reader-friendly approach, this undergraduate text features self-contained topical coverage and provides a large selection of solved exercises to aid in reader comprehension. Material in this text can be tailored for a one-, two-, or three-semester sequence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lewis, J. E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, A. C. F.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tokarsky, G. W.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leonard, I E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Leonard, I</subfield><subfield code="t">E.. Solutions Manual to Accompany Classical Geometry : Euclidean, Transformational, Inversive, and Projective</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-38-ESG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029024628</subfield></datafield></record></collection> |
id | DE-604.BV043610569 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:30:52Z |
institution | BVB |
isbn | 9781118903384 9781118903520 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029024628 |
oclc_num | 883568141 |
open_access_boolean | |
physical | 1 online resource (172 pages) |
psigel | ZDB-30-PQE ZDB-38-ESG |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Wiley |
record_format | marc |
spelling | Leonard, I. E. Verfasser aut Solutions Manual to Accompany Classical Geometry Euclidean, Transformational, Inversive, and Projective 1st ed Somerset Wiley 2014 © 2014 1 online resource (172 pages) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Solutions Manual to accompany Classical Geometry: Euclidean, Transformational, Inversive, and Projective Written by well-known mathematical problem solvers, Classical Geometry: Euclidean, Transformational, Inversive, and Projective features up-to-date and applicable coverage of the wide spectrum of geometry and aids readers in learning the art of logical reasoning, modeling, and proof. With its reader-friendly approach, this undergraduate text features self-contained topical coverage and provides a large selection of solved exercises to aid in reader comprehension. Material in this text can be tailored for a one-, two-, or three-semester sequence Geometry Lewis, J. E. Sonstige oth Liu, A. C. F. Sonstige oth Tokarsky, G. W. Sonstige oth Leonard, I E. Sonstige oth Erscheint auch als Druck-Ausgabe Leonard, I E.. Solutions Manual to Accompany Classical Geometry : Euclidean, Transformational, Inversive, and Projective |
spellingShingle | Leonard, I. E. Solutions Manual to Accompany Classical Geometry Euclidean, Transformational, Inversive, and Projective Geometry |
title | Solutions Manual to Accompany Classical Geometry Euclidean, Transformational, Inversive, and Projective |
title_auth | Solutions Manual to Accompany Classical Geometry Euclidean, Transformational, Inversive, and Projective |
title_exact_search | Solutions Manual to Accompany Classical Geometry Euclidean, Transformational, Inversive, and Projective |
title_full | Solutions Manual to Accompany Classical Geometry Euclidean, Transformational, Inversive, and Projective |
title_fullStr | Solutions Manual to Accompany Classical Geometry Euclidean, Transformational, Inversive, and Projective |
title_full_unstemmed | Solutions Manual to Accompany Classical Geometry Euclidean, Transformational, Inversive, and Projective |
title_short | Solutions Manual to Accompany Classical Geometry |
title_sort | solutions manual to accompany classical geometry euclidean transformational inversive and projective |
title_sub | Euclidean, Transformational, Inversive, and Projective |
topic | Geometry |
topic_facet | Geometry |
work_keys_str_mv | AT leonardie solutionsmanualtoaccompanyclassicalgeometryeuclideantransformationalinversiveandprojective AT lewisje solutionsmanualtoaccompanyclassicalgeometryeuclideantransformationalinversiveandprojective AT liuacf solutionsmanualtoaccompanyclassicalgeometryeuclideantransformationalinversiveandprojective AT tokarskygw solutionsmanualtoaccompanyclassicalgeometryeuclideantransformationalinversiveandprojective |