Hidden Markov Processes: Theory and Applications to Biology
This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematica...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton
Princeton University Press
2014
|
Schriftenreihe: | Princeton Series in Applied Mathematics
|
Schlagworte: | |
Zusammenfassung: | This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron-Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum-Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. The book also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (343 pages) |
ISBN: | 9781400850518 9780691133157 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043609055 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160616s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781400850518 |9 978-1-4008-5051-8 | ||
020 | |a 9780691133157 |c Print |9 978-0-691-13315-7 | ||
035 | |a (ZDB-30-PQE)EBC1680802 | ||
035 | |a (ZDB-89-EBL)EBL1680802 | ||
035 | |a (ZDB-38-EBR)ebr10901474 | ||
035 | |a (OCoLC)888550795 | ||
035 | |a (DE-599)BVBBV043609055 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 519.233 | |
100 | 1 | |a Vidyasagar, M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hidden Markov Processes |b Theory and Applications to Biology |
264 | 1 | |a Princeton |b Princeton University Press |c 2014 | |
264 | 4 | |c © 2014 | |
300 | |a 1 online resource (343 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Princeton Series in Applied Mathematics | |
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | |a This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron-Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum-Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. The book also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored | ||
650 | 4 | |a Computational biology | |
650 | 4 | |a Markov processes | |
650 | 0 | 7 | |a Hidden-Markov-Modell |0 (DE-588)4352479-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Markov-Prozess |0 (DE-588)4134948-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Markov-Prozess |0 (DE-588)4134948-9 |D s |
689 | 0 | 1 | |a Hidden-Markov-Modell |0 (DE-588)4352479-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Vidyasagar, M |t . Hidden Markov Processes : Theory and Applications to Biology |
912 | |a ZDB-30-PQE |a ZDB-38-ESG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029023114 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176355442556928 |
---|---|
any_adam_object | |
author | Vidyasagar, M. |
author_facet | Vidyasagar, M. |
author_role | aut |
author_sort | Vidyasagar, M. |
author_variant | m v mv |
building | Verbundindex |
bvnumber | BV043609055 |
collection | ZDB-30-PQE ZDB-38-ESG |
ctrlnum | (ZDB-30-PQE)EBC1680802 (ZDB-89-EBL)EBL1680802 (ZDB-38-EBR)ebr10901474 (OCoLC)888550795 (DE-599)BVBBV043609055 |
dewey-full | 519.233 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.233 |
dewey-search | 519.233 |
dewey-sort | 3519.233 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03208nmm a2200469zc 4500</leader><controlfield tag="001">BV043609055</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160616s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400850518</subfield><subfield code="9">978-1-4008-5051-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691133157</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-691-13315-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC1680802</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1680802</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr10901474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)888550795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043609055</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.233</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vidyasagar, M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hidden Markov Processes</subfield><subfield code="b">Theory and Applications to Biology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (343 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Princeton Series in Applied Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron-Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum-Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. The book also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hidden-Markov-Modell</subfield><subfield code="0">(DE-588)4352479-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hidden-Markov-Modell</subfield><subfield code="0">(DE-588)4352479-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Vidyasagar, M</subfield><subfield code="t">. Hidden Markov Processes : Theory and Applications to Biology</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-38-ESG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029023114</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043609055 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:30:52Z |
institution | BVB |
isbn | 9781400850518 9780691133157 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029023114 |
oclc_num | 888550795 |
open_access_boolean | |
physical | 1 online resource (343 pages) |
psigel | ZDB-30-PQE ZDB-38-ESG |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Princeton University Press |
record_format | marc |
series2 | Princeton Series in Applied Mathematics |
spelling | Vidyasagar, M. Verfasser aut Hidden Markov Processes Theory and Applications to Biology Princeton Princeton University Press 2014 © 2014 1 online resource (343 pages) txt rdacontent c rdamedia cr rdacarrier Princeton Series in Applied Mathematics Description based on publisher supplied metadata and other sources This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron-Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum-Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. The book also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored Computational biology Markov processes Hidden-Markov-Modell (DE-588)4352479-5 gnd rswk-swf Markov-Prozess (DE-588)4134948-9 gnd rswk-swf Markov-Prozess (DE-588)4134948-9 s Hidden-Markov-Modell (DE-588)4352479-5 s 1\p DE-604 Erscheint auch als Druck-Ausgabe Vidyasagar, M . Hidden Markov Processes : Theory and Applications to Biology 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Vidyasagar, M. Hidden Markov Processes Theory and Applications to Biology Computational biology Markov processes Hidden-Markov-Modell (DE-588)4352479-5 gnd Markov-Prozess (DE-588)4134948-9 gnd |
subject_GND | (DE-588)4352479-5 (DE-588)4134948-9 |
title | Hidden Markov Processes Theory and Applications to Biology |
title_auth | Hidden Markov Processes Theory and Applications to Biology |
title_exact_search | Hidden Markov Processes Theory and Applications to Biology |
title_full | Hidden Markov Processes Theory and Applications to Biology |
title_fullStr | Hidden Markov Processes Theory and Applications to Biology |
title_full_unstemmed | Hidden Markov Processes Theory and Applications to Biology |
title_short | Hidden Markov Processes |
title_sort | hidden markov processes theory and applications to biology |
title_sub | Theory and Applications to Biology |
topic | Computational biology Markov processes Hidden-Markov-Modell (DE-588)4352479-5 gnd Markov-Prozess (DE-588)4134948-9 gnd |
topic_facet | Computational biology Markov processes Hidden-Markov-Modell Markov-Prozess |
work_keys_str_mv | AT vidyasagarm hiddenmarkovprocessestheoryandapplicationstobiology |