Introduction to Numerical Methods for Time Dependent Differential Equations:
Introduces both the fundamentals of time dependent differential equations and their numerical solutions Introduction to Numerical Methods for Time Dependent Differential Equations delves into the underlying mathematical theory needed to solve time dependent differential equations numerically. Writte...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Somerset
Wiley
2014
|
Ausgabe: | 1st ed |
Schlagworte: | |
Zusammenfassung: | Introduces both the fundamentals of time dependent differential equations and their numerical solutions Introduction to Numerical Methods for Time Dependent Differential Equations delves into the underlying mathematical theory needed to solve time dependent differential equations numerically. Written as a self-contained introduction, the book is divided into two parts to emphasize both ordinary differential equations (ODEs) and partial differential equations (PDEs). Beginning with ODEs and their approximations, the authors provide a crucial presentation of fundamental notions, such as the theory of scalar equations, finite difference approximations, and the Explicit Euler method. Next, a discussion on higher order approximations, implicit methods, multistep methods, Fourier interpolation, PDEs in one space dimension as well as their related systems is provided. Introduction to Numerical Methods for Time Dependent Differential Equations features: A step-by-step discussion of the procedures needed to prove the stability of difference approximations Multiple exercises throughout with select answers, providing readers with a practical guide to understanding the approximations of differential equations A simplified approach in a one space dimension Analytical theory for difference approximations that is particularly useful to clarify procedures Introduction to Numerical Methods for Time Dependent Differential Equations is an excellent textbook for upper-undergraduate courses in applied mathematics, engineering, and physics as well as a useful reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs or predict and investigate phenomena from many disciplines |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (192 pages) |
ISBN: | 9781118838914 9781118838952 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043609054 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160616s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781118838914 |9 978-1-118-83891-4 | ||
020 | |a 9781118838952 |c Print |9 978-1-118-83895-2 | ||
035 | |a (ZDB-30-PQE)EBC1680800 | ||
035 | |a (ZDB-89-EBL)EBL1680800 | ||
035 | |a (ZDB-38-EBR)ebr10913516 | ||
035 | |a (OCoLC)863100793 | ||
035 | |a (DE-599)BVBBV043609054 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 515/.353 | |
100 | 1 | |a Kreiss, Heinz-Otto |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to Numerical Methods for Time Dependent Differential Equations |
250 | |a 1st ed | ||
264 | 1 | |a Somerset |b Wiley |c 2014 | |
264 | 4 | |c © 2014 | |
300 | |a 1 online resource (192 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | |a Introduces both the fundamentals of time dependent differential equations and their numerical solutions Introduction to Numerical Methods for Time Dependent Differential Equations delves into the underlying mathematical theory needed to solve time dependent differential equations numerically. Written as a self-contained introduction, the book is divided into two parts to emphasize both ordinary differential equations (ODEs) and partial differential equations (PDEs). Beginning with ODEs and their approximations, the authors provide a crucial presentation of fundamental notions, such as the theory of scalar equations, finite difference approximations, and the Explicit Euler method. Next, a discussion on higher order approximations, implicit methods, multistep methods, Fourier interpolation, PDEs in one space dimension as well as their related systems is provided. Introduction to Numerical Methods for Time Dependent Differential Equations features: A step-by-step discussion of the procedures needed to prove the stability of difference approximations Multiple exercises throughout with select answers, providing readers with a practical guide to understanding the approximations of differential equations A simplified approach in a one space dimension Analytical theory for difference approximations that is particularly useful to clarify procedures Introduction to Numerical Methods for Time Dependent Differential Equations is an excellent textbook for upper-undergraduate courses in applied mathematics, engineering, and physics as well as a useful reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs or predict and investigate phenomena from many disciplines | ||
650 | 4 | |a Conservation laws (Mathematics) | |
650 | 4 | |a Decomposition method | |
650 | 4 | |a Differential equations, Partial -- Numerical solutions | |
650 | 4 | |a Differential equations | |
650 | 4 | |a Finite volume method | |
650 | 0 | 7 | |a Zeitabhängige Methode |0 (DE-588)4279451-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 0 | 1 | |a Zeitabhängige Methode |0 (DE-588)4279451-1 |D s |
689 | 0 | 2 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Ortiz, Omar Eduardo |e Sonstige |4 oth | |
700 | 1 | |a Kreiss, H. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Kreiss, Heinz-Otto |t Introduction to Numerical Methods for Time Dependent Differential Equations |
912 | |a ZDB-30-PQE |a ZDB-38-ESG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029023113 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176355443605504 |
---|---|
any_adam_object | |
author | Kreiss, Heinz-Otto |
author_facet | Kreiss, Heinz-Otto |
author_role | aut |
author_sort | Kreiss, Heinz-Otto |
author_variant | h o k hok |
building | Verbundindex |
bvnumber | BV043609054 |
collection | ZDB-30-PQE ZDB-38-ESG |
ctrlnum | (ZDB-30-PQE)EBC1680800 (ZDB-89-EBL)EBL1680800 (ZDB-38-EBR)ebr10913516 (OCoLC)863100793 (DE-599)BVBBV043609054 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03852nmm a2200553zc 4500</leader><controlfield tag="001">BV043609054</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160616s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118838914</subfield><subfield code="9">978-1-118-83891-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118838952</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-118-83895-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC1680800</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1680800</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr10913516</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863100793</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043609054</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kreiss, Heinz-Otto</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Numerical Methods for Time Dependent Differential Equations</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Somerset</subfield><subfield code="b">Wiley</subfield><subfield code="c">2014</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (192 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduces both the fundamentals of time dependent differential equations and their numerical solutions Introduction to Numerical Methods for Time Dependent Differential Equations delves into the underlying mathematical theory needed to solve time dependent differential equations numerically. Written as a self-contained introduction, the book is divided into two parts to emphasize both ordinary differential equations (ODEs) and partial differential equations (PDEs). Beginning with ODEs and their approximations, the authors provide a crucial presentation of fundamental notions, such as the theory of scalar equations, finite difference approximations, and the Explicit Euler method. Next, a discussion on higher order approximations, implicit methods, multistep methods, Fourier interpolation, PDEs in one space dimension as well as their related systems is provided. Introduction to Numerical Methods for Time Dependent Differential Equations features: A step-by-step discussion of the procedures needed to prove the stability of difference approximations Multiple exercises throughout with select answers, providing readers with a practical guide to understanding the approximations of differential equations A simplified approach in a one space dimension Analytical theory for difference approximations that is particularly useful to clarify procedures Introduction to Numerical Methods for Time Dependent Differential Equations is an excellent textbook for upper-undergraduate courses in applied mathematics, engineering, and physics as well as a useful reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs or predict and investigate phenomena from many disciplines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conservation laws (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decomposition method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial -- Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite volume method</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitabhängige Methode</subfield><subfield code="0">(DE-588)4279451-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zeitabhängige Methode</subfield><subfield code="0">(DE-588)4279451-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ortiz, Omar Eduardo</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kreiss, H.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Kreiss, Heinz-Otto</subfield><subfield code="t">Introduction to Numerical Methods for Time Dependent Differential Equations</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-38-ESG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029023113</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043609054 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:30:52Z |
institution | BVB |
isbn | 9781118838914 9781118838952 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029023113 |
oclc_num | 863100793 |
open_access_boolean | |
physical | 1 online resource (192 pages) |
psigel | ZDB-30-PQE ZDB-38-ESG |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Wiley |
record_format | marc |
spelling | Kreiss, Heinz-Otto Verfasser aut Introduction to Numerical Methods for Time Dependent Differential Equations 1st ed Somerset Wiley 2014 © 2014 1 online resource (192 pages) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Introduces both the fundamentals of time dependent differential equations and their numerical solutions Introduction to Numerical Methods for Time Dependent Differential Equations delves into the underlying mathematical theory needed to solve time dependent differential equations numerically. Written as a self-contained introduction, the book is divided into two parts to emphasize both ordinary differential equations (ODEs) and partial differential equations (PDEs). Beginning with ODEs and their approximations, the authors provide a crucial presentation of fundamental notions, such as the theory of scalar equations, finite difference approximations, and the Explicit Euler method. Next, a discussion on higher order approximations, implicit methods, multistep methods, Fourier interpolation, PDEs in one space dimension as well as their related systems is provided. Introduction to Numerical Methods for Time Dependent Differential Equations features: A step-by-step discussion of the procedures needed to prove the stability of difference approximations Multiple exercises throughout with select answers, providing readers with a practical guide to understanding the approximations of differential equations A simplified approach in a one space dimension Analytical theory for difference approximations that is particularly useful to clarify procedures Introduction to Numerical Methods for Time Dependent Differential Equations is an excellent textbook for upper-undergraduate courses in applied mathematics, engineering, and physics as well as a useful reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs or predict and investigate phenomena from many disciplines Conservation laws (Mathematics) Decomposition method Differential equations, Partial -- Numerical solutions Differential equations Finite volume method Zeitabhängige Methode (DE-588)4279451-1 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 s Zeitabhängige Methode (DE-588)4279451-1 s Differentialgleichung (DE-588)4012249-9 s 1\p DE-604 Ortiz, Omar Eduardo Sonstige oth Kreiss, H. Sonstige oth Erscheint auch als Druck-Ausgabe Kreiss, Heinz-Otto Introduction to Numerical Methods for Time Dependent Differential Equations 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kreiss, Heinz-Otto Introduction to Numerical Methods for Time Dependent Differential Equations Conservation laws (Mathematics) Decomposition method Differential equations, Partial -- Numerical solutions Differential equations Finite volume method Zeitabhängige Methode (DE-588)4279451-1 gnd Differentialgleichung (DE-588)4012249-9 gnd Numerische Mathematik (DE-588)4042805-9 gnd |
subject_GND | (DE-588)4279451-1 (DE-588)4012249-9 (DE-588)4042805-9 |
title | Introduction to Numerical Methods for Time Dependent Differential Equations |
title_auth | Introduction to Numerical Methods for Time Dependent Differential Equations |
title_exact_search | Introduction to Numerical Methods for Time Dependent Differential Equations |
title_full | Introduction to Numerical Methods for Time Dependent Differential Equations |
title_fullStr | Introduction to Numerical Methods for Time Dependent Differential Equations |
title_full_unstemmed | Introduction to Numerical Methods for Time Dependent Differential Equations |
title_short | Introduction to Numerical Methods for Time Dependent Differential Equations |
title_sort | introduction to numerical methods for time dependent differential equations |
topic | Conservation laws (Mathematics) Decomposition method Differential equations, Partial -- Numerical solutions Differential equations Finite volume method Zeitabhängige Methode (DE-588)4279451-1 gnd Differentialgleichung (DE-588)4012249-9 gnd Numerische Mathematik (DE-588)4042805-9 gnd |
topic_facet | Conservation laws (Mathematics) Decomposition method Differential equations, Partial -- Numerical solutions Differential equations Finite volume method Zeitabhängige Methode Differentialgleichung Numerische Mathematik |
work_keys_str_mv | AT kreissheinzotto introductiontonumericalmethodsfortimedependentdifferentialequations AT ortizomareduardo introductiontonumericalmethodsfortimedependentdifferentialequations AT kreissh introductiontonumericalmethodsfortimedependentdifferentialequations |