Practical Guide to Data Mining for Business and Industry:
Data mining is well on its way to becoming a recognized discipline in the overlapping areas of IT, statistics, machine learning, and AI. Practical Data Mining for Business presents a user-friendly approach to data mining methods, covering the typical uses to which it is applied. The methodology is c...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Somerset
Wiley
2014
|
Ausgabe: | 1st ed |
Schlagworte: | |
Zusammenfassung: | Data mining is well on its way to becoming a recognized discipline in the overlapping areas of IT, statistics, machine learning, and AI. Practical Data Mining for Business presents a user-friendly approach to data mining methods, covering the typical uses to which it is applied. The methodology is complemented by case studies to create a versatile reference book, allowing readers to look for specific methods as well as for specific applications. The book is formatted to allow statisticians, computer scientists, and economists to cross-reference from a particular application or method to sectors of interest |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (325 pages) |
ISBN: | 9781118763728 9781118763704 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043608462 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160616s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781118763728 |9 978-1-118-76372-8 | ||
020 | |a 9781118763704 |c Print |9 978-1-118-76370-4 | ||
035 | |a (ZDB-30-PQE)EBC1658813 | ||
035 | |a (ZDB-89-EBL)EBL1658813 | ||
035 | |a (ZDB-38-EBR)ebr10855743 | ||
035 | |a (OCoLC)875098619 | ||
035 | |a (DE-599)BVBBV043608462 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 006.3/12 | |
100 | 1 | |a Ahlemeyer-Stubbe, Andrea |e Verfasser |4 aut | |
245 | 1 | 0 | |a Practical Guide to Data Mining for Business and Industry |
250 | |a 1st ed | ||
264 | 1 | |a Somerset |b Wiley |c 2014 | |
264 | 4 | |c © 2014 | |
300 | |a 1 online resource (325 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | |a Data mining is well on its way to becoming a recognized discipline in the overlapping areas of IT, statistics, machine learning, and AI. Practical Data Mining for Business presents a user-friendly approach to data mining methods, covering the typical uses to which it is applied. The methodology is complemented by case studies to create a versatile reference book, allowing readers to look for specific methods as well as for specific applications. The book is formatted to allow statisticians, computer scientists, and economists to cross-reference from a particular application or method to sectors of interest | ||
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Data mining | |
650 | 4 | |a Management -- Mathematical models | |
650 | 4 | |a Marketing -- Data processing | |
700 | 1 | |a Coleman, Shirley |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Ahlemeyer-Stubbe, Andrea |t Practical Guide to Data Mining for Business and Industry |
912 | |a ZDB-30-PQE |a ZDB-30-PBE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029022521 |
Datensatz im Suchindex
_version_ | 1804176354908831744 |
---|---|
any_adam_object | |
author | Ahlemeyer-Stubbe, Andrea |
author_facet | Ahlemeyer-Stubbe, Andrea |
author_role | aut |
author_sort | Ahlemeyer-Stubbe, Andrea |
author_variant | a a s aas |
building | Verbundindex |
bvnumber | BV043608462 |
collection | ZDB-30-PQE ZDB-30-PBE |
ctrlnum | (ZDB-30-PQE)EBC1658813 (ZDB-89-EBL)EBL1658813 (ZDB-38-EBR)ebr10855743 (OCoLC)875098619 (DE-599)BVBBV043608462 |
dewey-full | 006.3/12 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/12 |
dewey-search | 006.3/12 |
dewey-sort | 16.3 212 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02085nmm a2200445zc 4500</leader><controlfield tag="001">BV043608462</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160616s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118763728</subfield><subfield code="9">978-1-118-76372-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118763704</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-118-76370-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC1658813</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1658813</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr10855743</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)875098619</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043608462</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/12</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ahlemeyer-Stubbe, Andrea</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical Guide to Data Mining for Business and Industry</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Somerset</subfield><subfield code="b">Wiley</subfield><subfield code="c">2014</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (325 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Data mining is well on its way to becoming a recognized discipline in the overlapping areas of IT, statistics, machine learning, and AI. Practical Data Mining for Business presents a user-friendly approach to data mining methods, covering the typical uses to which it is applied. The methodology is complemented by case studies to create a versatile reference book, allowing readers to look for specific methods as well as for specific applications. The book is formatted to allow statisticians, computer scientists, and economists to cross-reference from a particular application or method to sectors of interest</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Management -- Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marketing -- Data processing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coleman, Shirley</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Ahlemeyer-Stubbe, Andrea</subfield><subfield code="t">Practical Guide to Data Mining for Business and Industry</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-30-PBE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029022521</subfield></datafield></record></collection> |
id | DE-604.BV043608462 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:30:51Z |
institution | BVB |
isbn | 9781118763728 9781118763704 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029022521 |
oclc_num | 875098619 |
open_access_boolean | |
physical | 1 online resource (325 pages) |
psigel | ZDB-30-PQE ZDB-30-PBE |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Wiley |
record_format | marc |
spelling | Ahlemeyer-Stubbe, Andrea Verfasser aut Practical Guide to Data Mining for Business and Industry 1st ed Somerset Wiley 2014 © 2014 1 online resource (325 pages) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Data mining is well on its way to becoming a recognized discipline in the overlapping areas of IT, statistics, machine learning, and AI. Practical Data Mining for Business presents a user-friendly approach to data mining methods, covering the typical uses to which it is applied. The methodology is complemented by case studies to create a versatile reference book, allowing readers to look for specific methods as well as for specific applications. The book is formatted to allow statisticians, computer scientists, and economists to cross-reference from a particular application or method to sectors of interest Datenverarbeitung Mathematisches Modell Data mining Management -- Mathematical models Marketing -- Data processing Coleman, Shirley Sonstige oth Erscheint auch als Druck-Ausgabe Ahlemeyer-Stubbe, Andrea Practical Guide to Data Mining for Business and Industry |
spellingShingle | Ahlemeyer-Stubbe, Andrea Practical Guide to Data Mining for Business and Industry Datenverarbeitung Mathematisches Modell Data mining Management -- Mathematical models Marketing -- Data processing |
title | Practical Guide to Data Mining for Business and Industry |
title_auth | Practical Guide to Data Mining for Business and Industry |
title_exact_search | Practical Guide to Data Mining for Business and Industry |
title_full | Practical Guide to Data Mining for Business and Industry |
title_fullStr | Practical Guide to Data Mining for Business and Industry |
title_full_unstemmed | Practical Guide to Data Mining for Business and Industry |
title_short | Practical Guide to Data Mining for Business and Industry |
title_sort | practical guide to data mining for business and industry |
topic | Datenverarbeitung Mathematisches Modell Data mining Management -- Mathematical models Marketing -- Data processing |
topic_facet | Datenverarbeitung Mathematisches Modell Data mining Management -- Mathematical models Marketing -- Data processing |
work_keys_str_mv | AT ahlemeyerstubbeandrea practicalguidetodataminingforbusinessandindustry AT colemanshirley practicalguidetodataminingforbusinessandindustry |