Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals: The Stockwell Transform Applied on Bio-signals and Electric Signals
This book focuses on signal processing algorithms based on the timefrequency domain. Original methods and algorithms are presented which are able to extract information from non-stationary signals such as heart sounds and power electric signals. The methods proposed focus on the time-frequency domai...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Somerset
Wiley
2014
|
Ausgabe: | 1st ed |
Schriftenreihe: | FOCUS
|
Schlagworte: | |
Zusammenfassung: | This book focuses on signal processing algorithms based on the timefrequency domain. Original methods and algorithms are presented which are able to extract information from non-stationary signals such as heart sounds and power electric signals. The methods proposed focus on the time-frequency domain, and most notably the Stockwell Transform for the feature extraction process and to identify signatures. For the classification method, the Adaline Neural Network is used and compared with other common classifiers. Theory enhancement, original applications and concrete implementation on FPGA for real-time processing are also covered in this book |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (149 pages) |
ISBN: | 9781118908778 9781118908686 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043608192 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160616s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781118908778 |9 978-1-118-90877-8 | ||
020 | |a 9781118908686 |c Print |9 978-1-118-90868-6 | ||
035 | |a (ZDB-30-PQE)EBC1650849 | ||
035 | |a (ZDB-89-EBL)EBL1650849 | ||
035 | |a (ZDB-38-EBR)ebr10849270 | ||
035 | |a (OCoLC)874321835 | ||
035 | |a (DE-599)BVBBV043608192 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 621.3822 | |
100 | 1 | |a Moukadem, Ali |e Verfasser |4 aut | |
245 | 1 | 0 | |a Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals |b The Stockwell Transform Applied on Bio-signals and Electric Signals |
250 | |a 1st ed | ||
264 | 1 | |a Somerset |b Wiley |c 2014 | |
264 | 4 | |c © 2014 | |
300 | |a 1 online resource (149 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a FOCUS | |
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | |a This book focuses on signal processing algorithms based on the timefrequency domain. Original methods and algorithms are presented which are able to extract information from non-stationary signals such as heart sounds and power electric signals. The methods proposed focus on the time-frequency domain, and most notably the Stockwell Transform for the feature extraction process and to identify signatures. For the classification method, the Adaline Neural Network is used and compared with other common classifiers. Theory enhancement, original applications and concrete implementation on FPGA for real-time processing are also covered in this book | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Signal processing -- Digital techniques | |
650 | 4 | |a Signal processing -- Mathematics | |
700 | 1 | |a Abdeslam, Djaffar Ould |e Sonstige |4 oth | |
700 | 1 | |a Dieterlen, Alain |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Moukadem, Ali |t Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals : The Stockwell Transform Applied on Bio-signals and Electric Signals |
912 | |a ZDB-30-PQE |a ZDB-38-ESG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029022251 |
Datensatz im Suchindex
_version_ | 1804176354724282368 |
---|---|
any_adam_object | |
author | Moukadem, Ali |
author_facet | Moukadem, Ali |
author_role | aut |
author_sort | Moukadem, Ali |
author_variant | a m am |
building | Verbundindex |
bvnumber | BV043608192 |
collection | ZDB-30-PQE ZDB-38-ESG |
ctrlnum | (ZDB-30-PQE)EBC1650849 (ZDB-89-EBL)EBL1650849 (ZDB-38-EBR)ebr10849270 (OCoLC)874321835 (DE-599)BVBBV043608192 |
dewey-full | 621.3822 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3822 |
dewey-search | 621.3822 |
dewey-sort | 3621.3822 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02305nmm a2200445zc 4500</leader><controlfield tag="001">BV043608192</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160616s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118908778</subfield><subfield code="9">978-1-118-90877-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118908686</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-118-90868-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC1650849</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1650849</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr10849270</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)874321835</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043608192</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3822</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moukadem, Ali</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals</subfield><subfield code="b">The Stockwell Transform Applied on Bio-signals and Electric Signals</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Somerset</subfield><subfield code="b">Wiley</subfield><subfield code="c">2014</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (149 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">FOCUS</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book focuses on signal processing algorithms based on the timefrequency domain. Original methods and algorithms are presented which are able to extract information from non-stationary signals such as heart sounds and power electric signals. The methods proposed focus on the time-frequency domain, and most notably the Stockwell Transform for the feature extraction process and to identify signatures. For the classification method, the Adaline Neural Network is used and compared with other common classifiers. Theory enhancement, original applications and concrete implementation on FPGA for real-time processing are also covered in this book</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing -- Digital techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing -- Mathematics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abdeslam, Djaffar Ould</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dieterlen, Alain</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Moukadem, Ali</subfield><subfield code="t">Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals : The Stockwell Transform Applied on Bio-signals and Electric Signals</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-38-ESG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029022251</subfield></datafield></record></collection> |
id | DE-604.BV043608192 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:30:51Z |
institution | BVB |
isbn | 9781118908778 9781118908686 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029022251 |
oclc_num | 874321835 |
open_access_boolean | |
physical | 1 online resource (149 pages) |
psigel | ZDB-30-PQE ZDB-38-ESG |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Wiley |
record_format | marc |
series2 | FOCUS |
spelling | Moukadem, Ali Verfasser aut Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals The Stockwell Transform Applied on Bio-signals and Electric Signals 1st ed Somerset Wiley 2014 © 2014 1 online resource (149 pages) txt rdacontent c rdamedia cr rdacarrier FOCUS Description based on publisher supplied metadata and other sources This book focuses on signal processing algorithms based on the timefrequency domain. Original methods and algorithms are presented which are able to extract information from non-stationary signals such as heart sounds and power electric signals. The methods proposed focus on the time-frequency domain, and most notably the Stockwell Transform for the feature extraction process and to identify signatures. For the classification method, the Adaline Neural Network is used and compared with other common classifiers. Theory enhancement, original applications and concrete implementation on FPGA for real-time processing are also covered in this book Mathematik Signal processing -- Digital techniques Signal processing -- Mathematics Abdeslam, Djaffar Ould Sonstige oth Dieterlen, Alain Sonstige oth Erscheint auch als Druck-Ausgabe Moukadem, Ali Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals : The Stockwell Transform Applied on Bio-signals and Electric Signals |
spellingShingle | Moukadem, Ali Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals The Stockwell Transform Applied on Bio-signals and Electric Signals Mathematik Signal processing -- Digital techniques Signal processing -- Mathematics |
title | Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals The Stockwell Transform Applied on Bio-signals and Electric Signals |
title_auth | Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals The Stockwell Transform Applied on Bio-signals and Electric Signals |
title_exact_search | Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals The Stockwell Transform Applied on Bio-signals and Electric Signals |
title_full | Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals The Stockwell Transform Applied on Bio-signals and Electric Signals |
title_fullStr | Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals The Stockwell Transform Applied on Bio-signals and Electric Signals |
title_full_unstemmed | Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals The Stockwell Transform Applied on Bio-signals and Electric Signals |
title_short | Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals |
title_sort | time frequency domain for segmentation and classification of non stationary signals the stockwell transform applied on bio signals and electric signals |
title_sub | The Stockwell Transform Applied on Bio-signals and Electric Signals |
topic | Mathematik Signal processing -- Digital techniques Signal processing -- Mathematics |
topic_facet | Mathematik Signal processing -- Digital techniques Signal processing -- Mathematics |
work_keys_str_mv | AT moukademali timefrequencydomainforsegmentationandclassificationofnonstationarysignalsthestockwelltransformappliedonbiosignalsandelectricsignals AT abdeslamdjaffarould timefrequencydomainforsegmentationandclassificationofnonstationarysignalsthestockwelltransformappliedonbiosignalsandelectricsignals AT dieterlenalain timefrequencydomainforsegmentationandclassificationofnonstationarysignalsthestockwelltransformappliedonbiosignalsandelectricsignals |