Predictive Analytics For Dummies:
Combine business sense, statistics, and computers in a new and intuitive way, thanks to Big Data Predictive analytics is a branch of data mining that helps predict probabilities and trends. Predictive Analytics For Dummies explores the power of predictive analytics and how you can use it to make val...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Somerset
Wiley
2014
|
Ausgabe: | 1st ed |
Schlagworte: | |
Zusammenfassung: | Combine business sense, statistics, and computers in a new and intuitive way, thanks to Big Data Predictive analytics is a branch of data mining that helps predict probabilities and trends. Predictive Analytics For Dummies explores the power of predictive analytics and how you can use it to make valuable predictions for your business, or in fields such as advertising, fraud detection, politics, and others. This practical book does not bog you down with loads of mathematical or scientific theory, but instead helps you quickly see how to use the right algorithms and tools to collect and analyze data and apply it to make predictions. Topics include using structured and unstructured data, building models, creating a predictive analysis roadmap, setting realistic goals, budgeting, and much more. Shows readers how to use Big Data and data mining to discover patterns and make predictions for tech-savvy businesses Helps readers see how to shepherd predictive analytics projects through their companies Explains just enough of the science and math, but also focuses on practical issues such as protecting project budgets, making good presentations, and more Covers nuts-and-bolts topics including predictive analytics basics, using structured and unstructured data, data mining, and algorithms and techniques for analyzing data Also covers clustering, association, and statistical models; creating a predictive analytics roadmap; and applying predictions to the web, marketing, finance, health care, and elsewhere Propose, produce, and protect predictive analytics projects through your company with Predictive Analytics For Dummies |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (363 pages) |
ISBN: | 9781118729205 9781118728963 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043608177 | ||
003 | DE-604 | ||
005 | 20180305 | ||
007 | cr|uuu---uuuuu | ||
008 | 160616s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781118729205 |9 978-1-118-72920-5 | ||
020 | |a 9781118728963 |c Print |9 978-1-118-72896-3 | ||
035 | |a (ZDB-30-PQE)EBC1650828 | ||
035 | |a (ZDB-89-EBL)EBL1650828 | ||
035 | |a (ZDB-38-EBR)ebr10849238 | ||
035 | |a (OCoLC)864560209 | ||
035 | |a (DE-599)BVBBV043608177 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 658.056312 | |
100 | 1 | |a Bari, Anasse |e Verfasser |4 aut | |
245 | 1 | 0 | |a Predictive Analytics For Dummies |
250 | |a 1st ed | ||
264 | 1 | |a Somerset |b Wiley |c 2014 | |
264 | 4 | |c © 2014 | |
300 | |a 1 online resource (363 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | |a Combine business sense, statistics, and computers in a new and intuitive way, thanks to Big Data Predictive analytics is a branch of data mining that helps predict probabilities and trends. Predictive Analytics For Dummies explores the power of predictive analytics and how you can use it to make valuable predictions for your business, or in fields such as advertising, fraud detection, politics, and others. This practical book does not bog you down with loads of mathematical or scientific theory, but instead helps you quickly see how to use the right algorithms and tools to collect and analyze data and apply it to make predictions. Topics include using structured and unstructured data, building models, creating a predictive analysis roadmap, setting realistic goals, budgeting, and much more. Shows readers how to use Big Data and data mining to discover patterns and make predictions for tech-savvy businesses Helps readers see how to shepherd predictive analytics projects through their companies Explains just enough of the science and math, but also focuses on practical issues such as protecting project budgets, making good presentations, and more Covers nuts-and-bolts topics including predictive analytics basics, using structured and unstructured data, data mining, and algorithms and techniques for analyzing data Also covers clustering, association, and statistical models; creating a predictive analytics roadmap; and applying predictions to the web, marketing, finance, health care, and elsewhere Propose, produce, and protect predictive analytics projects through your company with Predictive Analytics For Dummies | ||
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Data mining | |
650 | 4 | |a Management -- Data processing | |
650 | 4 | |a Management -- Mathematical models | |
650 | 0 | 7 | |a Datenmodell |0 (DE-588)4192516-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenmanagement |0 (DE-588)4213132-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vorhersagetheorie |0 (DE-588)4188671-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prognose |0 (DE-588)4047390-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 2 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 3 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 4 | |a Vorhersagetheorie |0 (DE-588)4188671-9 |D s |
689 | 0 | 5 | |a Datenmodell |0 (DE-588)4192516-6 |D s |
689 | 0 | 6 | |a Datenmanagement |0 (DE-588)4213132-7 |D s |
689 | 0 | 7 | |a Prognose |0 (DE-588)4047390-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Chaouchi, Mohamed |e Sonstige |4 oth | |
700 | 1 | |a Jung, Tommy |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Bari, Anasse |t Predictive Analytics For Dummies |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029022236 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176354731622400 |
---|---|
any_adam_object | |
author | Bari, Anasse |
author_facet | Bari, Anasse |
author_role | aut |
author_sort | Bari, Anasse |
author_variant | a b ab |
building | Verbundindex |
bvnumber | BV043608177 |
collection | ZDB-30-PQE |
ctrlnum | (ZDB-30-PQE)EBC1650828 (ZDB-89-EBL)EBL1650828 (ZDB-38-EBR)ebr10849238 (OCoLC)864560209 (DE-599)BVBBV043608177 |
dewey-full | 658.056312 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.056312 |
dewey-search | 658.056312 |
dewey-sort | 3658.056312 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04109nmm a2200673zc 4500</leader><controlfield tag="001">BV043608177</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180305 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160616s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118729205</subfield><subfield code="9">978-1-118-72920-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118728963</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-118-72896-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC1650828</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1650828</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr10849238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864560209</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043608177</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.056312</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bari, Anasse</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predictive Analytics For Dummies</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Somerset</subfield><subfield code="b">Wiley</subfield><subfield code="c">2014</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (363 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Combine business sense, statistics, and computers in a new and intuitive way, thanks to Big Data Predictive analytics is a branch of data mining that helps predict probabilities and trends. Predictive Analytics For Dummies explores the power of predictive analytics and how you can use it to make valuable predictions for your business, or in fields such as advertising, fraud detection, politics, and others. This practical book does not bog you down with loads of mathematical or scientific theory, but instead helps you quickly see how to use the right algorithms and tools to collect and analyze data and apply it to make predictions. Topics include using structured and unstructured data, building models, creating a predictive analysis roadmap, setting realistic goals, budgeting, and much more. Shows readers how to use Big Data and data mining to discover patterns and make predictions for tech-savvy businesses Helps readers see how to shepherd predictive analytics projects through their companies Explains just enough of the science and math, but also focuses on practical issues such as protecting project budgets, making good presentations, and more Covers nuts-and-bolts topics including predictive analytics basics, using structured and unstructured data, data mining, and algorithms and techniques for analyzing data Also covers clustering, association, and statistical models; creating a predictive analytics roadmap; and applying predictions to the web, marketing, finance, health care, and elsewhere Propose, produce, and protect predictive analytics projects through your company with Predictive Analytics For Dummies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Management -- Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Management -- Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenmodell</subfield><subfield code="0">(DE-588)4192516-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenmanagement</subfield><subfield code="0">(DE-588)4213132-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vorhersagetheorie</subfield><subfield code="0">(DE-588)4188671-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prognose</subfield><subfield code="0">(DE-588)4047390-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Vorhersagetheorie</subfield><subfield code="0">(DE-588)4188671-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Datenmodell</subfield><subfield code="0">(DE-588)4192516-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Datenmanagement</subfield><subfield code="0">(DE-588)4213132-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="7"><subfield code="a">Prognose</subfield><subfield code="0">(DE-588)4047390-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chaouchi, Mohamed</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jung, Tommy</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Bari, Anasse</subfield><subfield code="t">Predictive Analytics For Dummies</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029022236</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043608177 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:30:51Z |
institution | BVB |
isbn | 9781118729205 9781118728963 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029022236 |
oclc_num | 864560209 |
open_access_boolean | |
physical | 1 online resource (363 pages) |
psigel | ZDB-30-PQE |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Wiley |
record_format | marc |
spelling | Bari, Anasse Verfasser aut Predictive Analytics For Dummies 1st ed Somerset Wiley 2014 © 2014 1 online resource (363 pages) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Combine business sense, statistics, and computers in a new and intuitive way, thanks to Big Data Predictive analytics is a branch of data mining that helps predict probabilities and trends. Predictive Analytics For Dummies explores the power of predictive analytics and how you can use it to make valuable predictions for your business, or in fields such as advertising, fraud detection, politics, and others. This practical book does not bog you down with loads of mathematical or scientific theory, but instead helps you quickly see how to use the right algorithms and tools to collect and analyze data and apply it to make predictions. Topics include using structured and unstructured data, building models, creating a predictive analysis roadmap, setting realistic goals, budgeting, and much more. Shows readers how to use Big Data and data mining to discover patterns and make predictions for tech-savvy businesses Helps readers see how to shepherd predictive analytics projects through their companies Explains just enough of the science and math, but also focuses on practical issues such as protecting project budgets, making good presentations, and more Covers nuts-and-bolts topics including predictive analytics basics, using structured and unstructured data, data mining, and algorithms and techniques for analyzing data Also covers clustering, association, and statistical models; creating a predictive analytics roadmap; and applying predictions to the web, marketing, finance, health care, and elsewhere Propose, produce, and protect predictive analytics projects through your company with Predictive Analytics For Dummies Datenverarbeitung Mathematisches Modell Data mining Management -- Data processing Management -- Mathematical models Datenmodell (DE-588)4192516-6 gnd rswk-swf Datenmanagement (DE-588)4213132-7 gnd rswk-swf Data Mining (DE-588)4428654-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Vorhersagetheorie (DE-588)4188671-9 gnd rswk-swf Prognose (DE-588)4047390-9 gnd rswk-swf Big Data (DE-588)4802620-7 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Data Mining (DE-588)4428654-5 s Datenanalyse (DE-588)4123037-1 s Maschinelles Lernen (DE-588)4193754-5 s Big Data (DE-588)4802620-7 s Vorhersagetheorie (DE-588)4188671-9 s Datenmodell (DE-588)4192516-6 s Datenmanagement (DE-588)4213132-7 s Prognose (DE-588)4047390-9 s 1\p DE-604 Chaouchi, Mohamed Sonstige oth Jung, Tommy Sonstige oth Erscheint auch als Druck-Ausgabe Bari, Anasse Predictive Analytics For Dummies 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bari, Anasse Predictive Analytics For Dummies Datenverarbeitung Mathematisches Modell Data mining Management -- Data processing Management -- Mathematical models Datenmodell (DE-588)4192516-6 gnd Datenmanagement (DE-588)4213132-7 gnd Data Mining (DE-588)4428654-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Vorhersagetheorie (DE-588)4188671-9 gnd Prognose (DE-588)4047390-9 gnd Big Data (DE-588)4802620-7 gnd Datenanalyse (DE-588)4123037-1 gnd |
subject_GND | (DE-588)4192516-6 (DE-588)4213132-7 (DE-588)4428654-5 (DE-588)4193754-5 (DE-588)4188671-9 (DE-588)4047390-9 (DE-588)4802620-7 (DE-588)4123037-1 |
title | Predictive Analytics For Dummies |
title_auth | Predictive Analytics For Dummies |
title_exact_search | Predictive Analytics For Dummies |
title_full | Predictive Analytics For Dummies |
title_fullStr | Predictive Analytics For Dummies |
title_full_unstemmed | Predictive Analytics For Dummies |
title_short | Predictive Analytics For Dummies |
title_sort | predictive analytics for dummies |
topic | Datenverarbeitung Mathematisches Modell Data mining Management -- Data processing Management -- Mathematical models Datenmodell (DE-588)4192516-6 gnd Datenmanagement (DE-588)4213132-7 gnd Data Mining (DE-588)4428654-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Vorhersagetheorie (DE-588)4188671-9 gnd Prognose (DE-588)4047390-9 gnd Big Data (DE-588)4802620-7 gnd Datenanalyse (DE-588)4123037-1 gnd |
topic_facet | Datenverarbeitung Mathematisches Modell Data mining Management -- Data processing Management -- Mathematical models Datenmodell Datenmanagement Data Mining Maschinelles Lernen Vorhersagetheorie Prognose Big Data Datenanalyse |
work_keys_str_mv | AT barianasse predictiveanalyticsfordummies AT chaouchimohamed predictiveanalyticsfordummies AT jungtommy predictiveanalyticsfordummies |