Non-archimedean tame topology and stably dominated types:
Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity stat...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2016]
|
Schriftenreihe: | Annals of mathematics studies
number 192 |
Schlagworte: | |
Online-Zugang: | FAW01 FHA01 FHR01 FKE01 FLA01 TUM01 UPA01 FAB01 FCO01 Volltext |
Zusammenfassung: | Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools.For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry.This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness.Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods.No previous knowledge of non-archimedean geometry is assumed. Model-theoretic prerequisites are reviewed in the first sections |
Beschreibung: | 1 Online-Ressource (x, 216 Seiten) |
ISBN: | 9781400881222 9780691161686 9780691161693 |
DOI: | 10.1515/9781400881222 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043599261 | ||
003 | DE-604 | ||
005 | 20200403 | ||
007 | cr|uuu---uuuuu | ||
008 | 160614s2016 |||| o||u| ||||||eng d | ||
020 | |a 9781400881222 |c Online |9 978-1-4008-8122-2 | ||
020 | |a 9780691161686 |c print |9 978-0-691-16168-6 | ||
020 | |a 9780691161693 |c paperback |9 978-0-691-16169-3 | ||
024 | 7 | |a 10.1515/9781400881222 |2 doi | |
035 | |a (ZDB-23-DGG)9781400881222 | ||
035 | |a (OCoLC)933388580 | ||
035 | |a (DE-599)BVBBV043599261 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-898 |a DE-91 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-83 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 512.4 |2 23 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Hrushovski, Ehud |d 1959- |0 (DE-588)1103143778 |4 aut | |
245 | 1 | 0 | |a Non-archimedean tame topology and stably dominated types |c Ehud Hrushovski, François Loeser |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a 1 Online-Ressource (x, 216 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies |v number 192 | |
520 | |a Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools.For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry.This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness.Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods.No previous knowledge of non-archimedean geometry is assumed. Model-theoretic prerequisites are reviewed in the first sections | ||
650 | 4 | |a Tame algebras | |
700 | 1 | |a Loeser, François |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-16168-6 |
830 | 0 | |a Annals of mathematics studies |v number 192 |w (DE-604)BV040389493 |9 192 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400881222 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-PST |a ZDB-23-DGG |a ZDB-23-DMP | ||
940 | 1 | |q ZDB-23-DMA16 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029013474 | ||
966 | e | |u https://doi.org/10.1515/9781400881222?locatt=mode:legacy |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400881222?locatt=mode:legacy |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400881222?locatt=mode:legacy |l FHR01 |p ZDB-23-DMA |q ZDB-23-DMA16 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400881222?locatt=mode:legacy |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400881222?locatt=mode:legacy |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400881222?locatt=mode:legacy |l TUM01 |p ZDB-23-DMP |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400881222?locatt=mode:legacy |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400881222?locatt=mode:legacy |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781400881222?locatt=mode:legacy |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176341753397248 |
---|---|
any_adam_object | |
author | Hrushovski, Ehud 1959- Loeser, François |
author_GND | (DE-588)1103143778 |
author_facet | Hrushovski, Ehud 1959- Loeser, François |
author_role | aut aut |
author_sort | Hrushovski, Ehud 1959- |
author_variant | e h eh f l fl |
building | Verbundindex |
bvnumber | BV043599261 |
classification_rvk | SI 830 SK 240 |
collection | ZDB-23-PST ZDB-23-DGG ZDB-23-DMP |
ctrlnum | (ZDB-23-DGG)9781400881222 (OCoLC)933388580 (DE-599)BVBBV043599261 |
dewey-full | 512.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.4 |
dewey-search | 512.4 |
dewey-sort | 3512.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400881222 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04088nmm a2200565 cb4500</leader><controlfield tag="001">BV043599261</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200403 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160614s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400881222</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4008-8122-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691161686</subfield><subfield code="c">print</subfield><subfield code="9">978-0-691-16168-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691161693</subfield><subfield code="c">paperback</subfield><subfield code="9">978-0-691-16169-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400881222</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400881222</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)933388580</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043599261</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.4</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hrushovski, Ehud</subfield><subfield code="d">1959-</subfield><subfield code="0">(DE-588)1103143778</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-archimedean tame topology and stably dominated types</subfield><subfield code="c">Ehud Hrushovski, François Loeser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 216 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">number 192</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools.For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry.This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness.Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods.No previous knowledge of non-archimedean geometry is assumed. Model-theoretic prerequisites are reviewed in the first sections</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tame algebras</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Loeser, François</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-16168-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">number 192</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">192</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400881222</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-PST</subfield><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMP</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA16</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029013474</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400881222?locatt=mode:legacy</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400881222?locatt=mode:legacy</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400881222?locatt=mode:legacy</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA16</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400881222?locatt=mode:legacy</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400881222?locatt=mode:legacy</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400881222?locatt=mode:legacy</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DMP</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400881222?locatt=mode:legacy</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400881222?locatt=mode:legacy</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400881222?locatt=mode:legacy</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043599261 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:30:39Z |
institution | BVB |
isbn | 9781400881222 9780691161686 9780691161693 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029013474 |
oclc_num | 933388580 |
open_access_boolean | |
owner | DE-859 DE-860 DE-898 DE-BY-UBR DE-91 DE-BY-TUM DE-Aug4 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-898 DE-BY-UBR DE-91 DE-BY-TUM DE-Aug4 DE-739 DE-1046 DE-83 DE-1043 DE-858 |
physical | 1 Online-Ressource (x, 216 Seiten) |
psigel | ZDB-23-PST ZDB-23-DGG ZDB-23-DMP ZDB-23-DMA16 ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA16 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMP TUM_Paketkauf ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of mathematics studies |
series2 | Annals of mathematics studies |
spelling | Hrushovski, Ehud 1959- (DE-588)1103143778 aut Non-archimedean tame topology and stably dominated types Ehud Hrushovski, François Loeser Princeton, NJ Princeton University Press [2016] © 2016 1 Online-Ressource (x, 216 Seiten) txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies number 192 Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools.For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry.This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness.Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods.No previous knowledge of non-archimedean geometry is assumed. Model-theoretic prerequisites are reviewed in the first sections Tame algebras Loeser, François aut Erscheint auch als Druck-Ausgabe 978-0-691-16168-6 Annals of mathematics studies number 192 (DE-604)BV040389493 192 https://doi.org/10.1515/9781400881222 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Hrushovski, Ehud 1959- Loeser, François Non-archimedean tame topology and stably dominated types Annals of mathematics studies Tame algebras |
title | Non-archimedean tame topology and stably dominated types |
title_auth | Non-archimedean tame topology and stably dominated types |
title_exact_search | Non-archimedean tame topology and stably dominated types |
title_full | Non-archimedean tame topology and stably dominated types Ehud Hrushovski, François Loeser |
title_fullStr | Non-archimedean tame topology and stably dominated types Ehud Hrushovski, François Loeser |
title_full_unstemmed | Non-archimedean tame topology and stably dominated types Ehud Hrushovski, François Loeser |
title_short | Non-archimedean tame topology and stably dominated types |
title_sort | non archimedean tame topology and stably dominated types |
topic | Tame algebras |
topic_facet | Tame algebras |
url | https://doi.org/10.1515/9781400881222 |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT hrushovskiehud nonarchimedeantametopologyandstablydominatedtypes AT loeserfrancois nonarchimedeantametopologyandstablydominatedtypes |