Rigid cohomology over Laurent Series fields:
Introduction -- First definitions and basic properties -- Finiteness with coefficients via a local monodromy theorem -- The overconvergent site, descent, and cohomology with compact support -- Absolute coefficients and arithmetic applications -- Rigid cohomology -- Adic spaces and rigid spaces -- Co...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
[Cham]
Springer
[2016]
|
Schriftenreihe: | Algebra and Applications
volume 21 |
Schlagworte: | |
Zusammenfassung: | Introduction -- First definitions and basic properties -- Finiteness with coefficients via a local monodromy theorem -- The overconvergent site, descent, and cohomology with compact support -- Absolute coefficients and arithmetic applications -- Rigid cohomology -- Adic spaces and rigid spaces -- Cohomological descent -- Index In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject |
Beschreibung: | Literaturangaben |
Beschreibung: | x, 267 Seiten |
ISBN: | 9783319309507 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV043595115 | ||
003 | DE-604 | ||
005 | 20161027 | ||
007 | t | ||
008 | 160610s2016 |||| 00||| eng d | ||
020 | |a 9783319309507 |c hbk |9 978-3-319-30950-7 | ||
035 | |a (OCoLC)950458141 | ||
035 | |a (DE-599)GBV859736334 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA564-609 | |
082 | 0 | |a 516.35 | |
084 | |a MAT 143f |2 stub | ||
084 | |a 14F90 |2 msc | ||
100 | 1 | |a Lazda, Christopher |0 (DE-588)1104274930 |4 aut | |
245 | 1 | 0 | |a Rigid cohomology over Laurent Series fields |c Christopher Lazda, Ambrus Pál |
264 | 1 | |a [Cham] |b Springer |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a x, 267 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Algebra and Applications |v volume 21 | |
500 | |a Literaturangaben | ||
520 | 1 | |a Introduction -- First definitions and basic properties -- Finiteness with coefficients via a local monodromy theorem -- The overconvergent site, descent, and cohomology with compact support -- Absolute coefficients and arithmetic applications -- Rigid cohomology -- Adic spaces and rigid spaces -- Cohomological descent -- Index | |
520 | 8 | |a In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject | |
650 | 4 | |a aMathematics | |
650 | 4 | |a aAlgebraic geometry | |
650 | 4 | |a aNumber theory | |
650 | 0 | 7 | |a Laurent-Reihe |0 (DE-588)4192933-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verallgemeinerung |0 (DE-588)4316262-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kristalline Kohomologie |0 (DE-588)4494390-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kristalline Kohomologie |0 (DE-588)4494390-8 |D s |
689 | 0 | 1 | |a Verallgemeinerung |0 (DE-588)4316262-9 |D s |
689 | 0 | 2 | |a Laurent-Reihe |0 (DE-588)4192933-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Pál, Ambrus |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-319-30951-4 |
830 | 0 | |a Algebra and Applications |v volume 21 |w (DE-604)BV035420975 |9 21 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029009410 |
Datensatz im Suchindex
_version_ | 1804176334877884416 |
---|---|
any_adam_object | |
author | Lazda, Christopher Pál, Ambrus |
author_GND | (DE-588)1104274930 |
author_facet | Lazda, Christopher Pál, Ambrus |
author_role | aut aut |
author_sort | Lazda, Christopher |
author_variant | c l cl a p ap |
building | Verbundindex |
bvnumber | BV043595115 |
callnumber-first | Q - Science |
callnumber-label | QA564-609 |
callnumber-raw | QA564-609 |
callnumber-search | QA564-609 |
callnumber-sort | QA 3564 3609 |
callnumber-subject | QA - Mathematics |
classification_tum | MAT 143f |
ctrlnum | (OCoLC)950458141 (DE-599)GBV859736334 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03465nam a2200517 cb4500</leader><controlfield tag="001">BV043595115</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20161027 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">160610s2016 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319309507</subfield><subfield code="c">hbk</subfield><subfield code="9">978-3-319-30950-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)950458141</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV859736334</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA564-609</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 143f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14F90</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lazda, Christopher</subfield><subfield code="0">(DE-588)1104274930</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rigid cohomology over Laurent Series fields</subfield><subfield code="c">Christopher Lazda, Ambrus Pál</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Cham]</subfield><subfield code="b">Springer</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 267 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Algebra and Applications</subfield><subfield code="v">volume 21</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">Introduction -- First definitions and basic properties -- Finiteness with coefficients via a local monodromy theorem -- The overconvergent site, descent, and cohomology with compact support -- Absolute coefficients and arithmetic applications -- Rigid cohomology -- Adic spaces and rigid spaces -- Cohomological descent -- Index</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aMathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aAlgebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aNumber theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laurent-Reihe</subfield><subfield code="0">(DE-588)4192933-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verallgemeinerung</subfield><subfield code="0">(DE-588)4316262-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kristalline Kohomologie</subfield><subfield code="0">(DE-588)4494390-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kristalline Kohomologie</subfield><subfield code="0">(DE-588)4494390-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verallgemeinerung</subfield><subfield code="0">(DE-588)4316262-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Laurent-Reihe</subfield><subfield code="0">(DE-588)4192933-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pál, Ambrus</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-319-30951-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Algebra and Applications</subfield><subfield code="v">volume 21</subfield><subfield code="w">(DE-604)BV035420975</subfield><subfield code="9">21</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029009410</subfield></datafield></record></collection> |
id | DE-604.BV043595115 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:30:32Z |
institution | BVB |
isbn | 9783319309507 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029009410 |
oclc_num | 950458141 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-83 DE-11 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-83 DE-11 DE-188 |
physical | x, 267 Seiten |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Springer |
record_format | marc |
series | Algebra and Applications |
series2 | Algebra and Applications |
spelling | Lazda, Christopher (DE-588)1104274930 aut Rigid cohomology over Laurent Series fields Christopher Lazda, Ambrus Pál [Cham] Springer [2016] © 2016 x, 267 Seiten txt rdacontent n rdamedia nc rdacarrier Algebra and Applications volume 21 Literaturangaben Introduction -- First definitions and basic properties -- Finiteness with coefficients via a local monodromy theorem -- The overconvergent site, descent, and cohomology with compact support -- Absolute coefficients and arithmetic applications -- Rigid cohomology -- Adic spaces and rigid spaces -- Cohomological descent -- Index In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject aMathematics aAlgebraic geometry aNumber theory Laurent-Reihe (DE-588)4192933-0 gnd rswk-swf Verallgemeinerung (DE-588)4316262-9 gnd rswk-swf Kristalline Kohomologie (DE-588)4494390-8 gnd rswk-swf Kristalline Kohomologie (DE-588)4494390-8 s Verallgemeinerung (DE-588)4316262-9 s Laurent-Reihe (DE-588)4192933-0 s DE-604 Pál, Ambrus aut Erscheint auch als Online-Ausgabe 978-3-319-30951-4 Algebra and Applications volume 21 (DE-604)BV035420975 21 |
spellingShingle | Lazda, Christopher Pál, Ambrus Rigid cohomology over Laurent Series fields Algebra and Applications aMathematics aAlgebraic geometry aNumber theory Laurent-Reihe (DE-588)4192933-0 gnd Verallgemeinerung (DE-588)4316262-9 gnd Kristalline Kohomologie (DE-588)4494390-8 gnd |
subject_GND | (DE-588)4192933-0 (DE-588)4316262-9 (DE-588)4494390-8 |
title | Rigid cohomology over Laurent Series fields |
title_auth | Rigid cohomology over Laurent Series fields |
title_exact_search | Rigid cohomology over Laurent Series fields |
title_full | Rigid cohomology over Laurent Series fields Christopher Lazda, Ambrus Pál |
title_fullStr | Rigid cohomology over Laurent Series fields Christopher Lazda, Ambrus Pál |
title_full_unstemmed | Rigid cohomology over Laurent Series fields Christopher Lazda, Ambrus Pál |
title_short | Rigid cohomology over Laurent Series fields |
title_sort | rigid cohomology over laurent series fields |
topic | aMathematics aAlgebraic geometry aNumber theory Laurent-Reihe (DE-588)4192933-0 gnd Verallgemeinerung (DE-588)4316262-9 gnd Kristalline Kohomologie (DE-588)4494390-8 gnd |
topic_facet | aMathematics aAlgebraic geometry aNumber theory Laurent-Reihe Verallgemeinerung Kristalline Kohomologie |
volume_link | (DE-604)BV035420975 |
work_keys_str_mv | AT lazdachristopher rigidcohomologyoverlaurentseriesfields AT palambrus rigidcohomologyoverlaurentseriesfields |