An introduction to quantum physics: a first course for physicists, chemists, materials scientists, and engineers
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2018]
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | xxviii, 536 Seiten Illustrationen, Diagramme |
ISBN: | 9783527412471 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043586294 | ||
003 | DE-604 | ||
005 | 20180615 | ||
007 | t | ||
008 | 160606s2018 gw a||| |||| 00||| eng d | ||
015 | |a 15,N49 |2 dnb | ||
016 | 7 | |a 1079290656 |2 DE-101 | |
020 | |a 9783527412471 |c pbk. |9 978-3-527-41247-1 | ||
035 | |a (OCoLC)1019894891 | ||
035 | |a (DE-599)DNB1079290656 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-29T |a DE-355 |a DE-11 |a DE-92 |a DE-703 |a DE-19 |a DE-20 |a DE-634 |a DE-706 | ||
082 | 0 | |a 530 |2 23 | |
084 | |a UK 1000 |0 (DE-625)145785: |2 rvk | ||
084 | |a UK 1200 |0 (DE-625)145792: |2 rvk | ||
100 | 1 | |a Trachanas, Stefanos |e Verfasser |4 aut | |
245 | 1 | 0 | |a An introduction to quantum physics |b a first course for physicists, chemists, materials scientists, and engineers |c Stefanos Trachanas ; translated and edited by: Manolis Antonoyiannakis and Leonidas Tsetseris |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a xxviii, 536 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Quantenchemie |0 (DE-588)4047979-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | 1 | |a Quantenchemie |0 (DE-588)4047979-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Antonoyiannakis, Manolis |4 edt | |
700 | 1 | |a Tsetseris, Leonidas |0 (DE-588)1156814499 |4 edt | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, ePDF |z 978-3-527-67665-1 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, ePub |z 978-3-527-67668-2 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, Mobi |z 978-3-527-67667-5 |
856 | 4 | 2 | |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41247-1/ |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029000839&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029000839 |
Datensatz im Suchindex
_version_ | 1804176319830818816 |
---|---|
adam_text | CONTENTS
FOREWORD XIX
PREFACE XXIII
EDITORS NOTE XXVII
PART I FUNDAMENTAL PRINCIPLES 1
1 THE PRINCIPLE OF WAVE-PARTICLE DUALITY: AN OVERVIEW 3
1.1 INTRODUCTION 3
1.2 THE PRINCIPLE OF WAVE-PARTICLE DUALITY OF LIGHT 4
1.2.1 THE PHOTOELECTRIC EFFECT 4
1.2.2 THE COMPTON EFFECT 7
1.2.3 A NOTE ON UNITS 10
1.3 THE PRINCIPLE OF WAVE-PARTICLE DUALITY OF MATTER 11
1.3.1 FROM FREQUENCY QUANTIZATION IN CLASSICAL WAVES TO ENERGY
QUANTIZATION IN MATTER WAVES: THE MOST IMPORTANT GENERAL
CONSEQUENCE OF WAVE-PARTICLE DUALITY OF MATTER 12
1.3.2 THE PROBLEM OF ATOMIC STABILITY UNDER COLLISIONS 13
1.3.3 THE PROBLEM OF ENERGY SCALES: WHY ARE ATOMIC ENERGIES ON THE ORDER
OF EV, WHILE NUCLEAR ENERGIES ARE ON THE ORDER OF MEV? 15
1.3.4 THE STABILITY OF ATOMS AND MOLECULES AGAINST EXTERNAL
ELECTROMAGNETIC RADIATION 17
1.3.5 THE PROBLEM OF LENGTH SCALES: WHY ARE ATOMIC SIZES ON THE ORDER OF
ANGSTROMS, WHILE NUCLEAR SIZES ARE ON THE ORDER OF FERMIS? 19
1.3.6 THE STABILITY OF ATOMS AGAINST THEIR OWN RADIATION: PROBABILISTIC
INTERPRETATION OF MATTER WAVES 21
1.3.7 HOW DO ATOMS RADIATE AFTER ALL? QUANTUM JUMPS FROM HIGHER TO
LOWER ENERGY STATES AND ATOMIC SPECTRA 22
1.3.8 QUANTIZED ENERGIES AND ATOMIC SPECTRA: THE CASE OF HYDROGEN 25
1.3.9 CORRECT AND INCORRECT PICTURES FOR THE MOTION OF ELECTRONS IN
ATOMS:
REVISITING THE CASE OF HYDROGEN 25
1.3.10 THE FINE STRUCTURE CONSTANT AND NUMERICAL CALCULATIONS IN BOHRS
THEORY 29
1.3.11 NUMERICAL CALCULATIONS WITH MATTER WAVES: PRACTICAL FORMULAS AND
PHYSICAL APPLICATIONS 31
1.3.12 A DIRECT CONFIRMATION OF THE EXISTENCE OF MATTER WAVES: THE
DAVISSON-GERMER EXPERIMENT 33
1.3.13 THE DOUBLE-SLIT EXPERIMENT: COLLAPSE OF THE WAVEFUNCTION UPON
MEASUREMENT 34
1.4 DIMENSIONAL ANALYSIS AND QUANTUM PHYSICS 41
1.4.1 THE FUNDAMENTAL THEOREM AND A SIMPLE APPLICATION 41
1.4.2 BLACKBODY RADIATION USING DIMENSIONAL ANALYSIS 44
1.4.3 THE HYDROGEN ATOM USING DIMENSIONAL ANALYSIS 47
2 THE SCHROEDINGER EQUATION AND ITS STATISTICAL INTERPRETATION 53
2.1 INTRODUCTION 53
2.2 THE SCHROEDINGER EQUATION 53
2.2.1 THE SCHROEDINGER EQUATION FOR FREE PARTICLES 54
2.2.2 THE SCHROEDINGER EQUATION IN AN EXTERNAL POTENTIAL 57
2.2.3 MATHEMATICAL INTERMISSION I: LINEAR OPERATORS 58
2.3 STATISTICAL INTERPRETATION OF QUANTUM MECHANICS 60
2.3.1 THE *PARTICLE-WAVE* CONTRADICTION IN CLASSICAL MECHANICS 60
2.3.2 STATISTICAL INTERPRETATION 61
2.3.3 WHY DID WE CHOOSE
P(X) * Y/(X) 2 AS THE PROBABILITY DENSITY? 62
2.3.4 MATHEMATICAL INTERMISSION II: BASIC STATISTICAL CONCEPTS 63
2.3.4.1 MEAN VALUE 63
2.3.4.2 STANDARD DEVIATION (OR UNCERTAINTY) 65
2.3.5 POSITION MEASUREMENTS: MEAN VALUE AND UNCERTAINTY 67
2.4 FURTHER DEVELOPMENT OF THE STATISTICAL INTERPRETATION: THE
MEAN-VALUE
FORMULA 71
2.4.1 THE GENERAL FORMULA FOR THE MEAN VALUE 71
2.4.2 THE GENERAL FORMULA FOR UNCERTAINTY 73
2.5 TIME EVOLUTION OF WAVEFUNCTIONS AND SUPERPOSITION STATES 77
2.5.1 SETTING THE STAGE 77
2.5.2 SOLVING THE SCHROEDINGER EQUATION. SEPARATION OF VARIABLES 78
2.5.3 THE TIME-INDEPENDENT SCHROEDINGER EQUATION AS AN EIGENVALUE
EQUATION: ZERO-UNCERTAINTY STATES AND SUPERPOSITION STATES 81
2.5.4 ENERGY QUANTIZATION FOR CONFINED MOTION: A FUNDAMENTAL GENERAL
CONSEQUENCE OF SCHROEDINGERS EQUATION 85
2.5.5 THE ROLE OF MEASUREMENT IN QUANTUM MECHANICS: COLLAPSE OF THE
WAVEFUNCTION UPON MEASUREMENT 86
2.5.6 MEASURABLE CONSEQUENCES OF TIME EVOLUTION: STATIONARY AND
NONSTATIONARY STATES 91
2.6 SELF-CONSISTENCY OF THE STATISTICAL INTERPRETATION AND THE
MATHEMATICAL
STRUCTURE OF QUANTUM MECHANICS 95
2.6.1 HERMITIAN OPERATORS 95
2.6.2 CONSERVATION OF PROBABILITY 98
2.6.3 INNER PRODUCT AND ORTHOGONALITY 99
2.6.4 MATRIX REPRESENTATION OF QUANTUM MECHANICAL OPERATORS 101
2.7 SUMMARY: QUANTUM MECHANICS IN A NUTSHELL 103
3 THE UNCERTAINTY PRINCIPLE 107
3.1 INTRODUCTION 107
3.2 THE POSITION-MOMENTUM UNCERTAINTY PRINCIPLE 108
3.2.1 MATHEMATICAL EXPLANATION OF THE PRINCIPLE 108
3.2.2 PHYSICAL EXPLANATION OF THE PRINCIPLE 109
3.2.3 QUANTUM RESISTANCE TO CONFINEMENT. A FUNDAMENTAL CONSEQUENCE OF
THE POSITION-MOMENTUM UNCERTAINTY PRINCIPLE 112
3.3 THE TIME-ENERGY UNCERTAINTY PRINCIPLE 114
3.4 THE UNCERTAINTY PRINCIPLE IN THE CLASSICAL LIMIT 118
3.5 GENERAL INVESTIGATION OF THE UNCERTAINTY PRINCIPLE 119
3.5.1 COMPATIBLE AND INCOMPATIBLE PHYSICAL QUANTITIES AND THE
GENERALIZED
UNCERTAINTY RELATION 119
3.5.2 ANGULAR MOMENTUM: A DIFFERENT KIND OF VECTOR 122
PART II SIMPLE QUANTUM SYSTEMS 127
4 SQUARE POTENTIALS. I: DISCRETE SPECTRUM*BOUND STATES 129
4.1 INTRODUCTION 129
4.2 PARTICLE IN A ONE-DIMENSIONAL BOX: THE INFINITE POTENTIAL WELL 132
4.2.1 SOLUTION OF THE SCHROEDINGER EQUATION
132
4.2.2 DISCUSSION OF THE RESULTS 134
4.2.2.1 DIMENSIONAL ANALYSIS OF THE FORMULA
EN = (H27Z2/2M L2)N2.
DO WE NEED AN EXACT SOLUTION TO PREDICT THE ENERGY DEPENDENCE ON
H,
M, AND
L? 135
4.2.2.2 DEPENDENCE OF THE GROUND-STATE ENERGY ON
H,
M
,
AND
L : THE CLASSICAL
LIMIT 136
4.2.2.3 THE LIMIT OF LARGE QUANTUM NUMBERS AND QUANTUM
DISCONTINUITIES 137
4.2.2.4 THE CLASSICAL LIMIT OF THE POSITION PROBABILITY DENSITY 138
4.2.2.5 EIGENFUNCTION FEATURES: MIRROR SYMMETRY AND THE NODE
THEOREM 139
4.2.2.6 NUMERICAL CALCULATIONS IN PRACTICAL UNITS 139
4.3 THE SQUARE POTENTIAL WELL 140
4.3.1 SOLUTION OF THE SCHROEDINGER EQUATION 140
4.3.2 DISCUSSION OF THE RESULTS 143
4.3.2.1 PENETRATION INTO CLASSICALLY FORBIDDEN REGIONS 143
4.3.2.2 PENETRATION IN THE CLASSICAL LIMIT 144
4.3.2.3 THE PHYSICS AND *NUMERICS* OF THE PARAMETER A 145
5 SQUARE POTENTIALS. II: CONTINUOUS SPECTRUM*SCATTERING
STATES 149
5.1 INTRODUCTION 149
5.2 THE SQUARE POTENTIAL STEP: REFLECTION AND TRANSMISSION 150
5.2.1 SOLUTION OF THE SCHROEDINGER EQUATION AND CALCULATION OF THE
REFLECTION
COEFFICIENT 150
5.2.2 DISCUSSION OF THE RESULTS 153
5.2.2.1 THE PHENOMENON OF CLASSICALLY FORBIDDEN REFLECTION 153
5.2.2.2 TRANSMISSION COEFFICIENT IN THE *CLASSICAL LIMIT* OF HIGH
ENERGIES 154
5.2.2.3 THE REFLECTION COEFFICIENT DEPENDS NEITHER ON PLANCK*S CONSTANT
NOR
ON THE MASS OF THE PARTICLE: ANALYSIS OF A PARADOX 154
5.2.2.4 AN ARGUMENT FROM DIMENSIONAL ANALYSIS 155
5.3 RECTANGULAR POTENTIAL BARRIER: TUNNELING EFFECT 156
5.3.1 SOLUTION OF THE SCHROEDINGER EQUATION 156
5.3.2 DISCUSSION OF THE RESULTS 158
5.3.2.1 CROSSING A CLASSICALLY FORBIDDEN REGION: THE TUNNELING EFFECT
158
5.3.2.2 EXPONENTIAL SENSITIVITY OF THE TUNNELING EFFECT TO THE ENERGY OF
THE
PARTICLE 159
53.23 A SIMPLE APPROXIMATE EXPRESSION FOR THE TRANSMISSION
COEFFICIENT 160
5.3.2.4 EXPONENTIAL SENSITIVITY OF THE TUNNELING EFFECT TO THE MASS OF
THE
PARTICLE 162
53.2.5 A PRACTICAL FORMULA FOR T 163
6 THE HARMONIC OSCILLATOR 167
6.1 INTRODUCTION 167
6.2 SOLUTION OF THE SCHROEDINGER EQUATION 169
6.3 DISCUSSION OF THE RESULTS 177
6.3.1 SHAPE OF WAVEFUNCTIONS. MIRROR SYMMETRY AND THE NODE
THEOREM 178
6.3.2 SHAPE OF EIGENFUNCTIONS FOR LARGE N: THE CLASSICAL LIMIT 179
6.3.3 THE EXTREME ANTICLASSICAL LIMIT OF THE GROUND STATE 180
6.3.4 PENETRATION INTO CLASSICALLY FORBIDDEN REGIONS: WHAT FRACTION OF
ITS
*LIFETIME* DOES THE PARTICLE *SPEND* IN THE CLASSICALLY FORBIDDEN
REGION? 181
6.3.5 A QUANTUM OSCILLATOR NEVER RESTS: ZERO-POINT ENERGY 182
6.3.6 EQUIDISTANT EIGENVALUES AND EMISSION OF RADIATION FROM A QUANTUM
HARMONIC OSCILLATOR 184
6.4 A PLAUSIBLE QUESTION: CAN WE USE THE POLYNOMIAL METHOD TO SOLVE
POTENTIALS OTHER THAN THE HARMONIC OSCILLATOR? 187
7 THE POLYNOMIAL METHOD: SYSTEMATIC THEORY AND
APPLICATIONS 191
7.1 INTRODUCTION: THE POWER-SERIES METHOD 191
7.2 SUFFICIENT CONDITIONS FOR THE EXISTENCE OF POLYNOMIAL SOLUTIONS:
BIDIMENSIONAL EQUATIONS 194
73 THE POLYNOMIAL METHOD IN ACTION: EXACT SOLUTION OF THE KRATZER AND
MORSE POTENTIALS 197
7.4 MATHEMATICAL AFTERWORD 202
8 THE HYDROGEN ATOM. I: SPHERICALLY SYMMETRIC SOLUTIONS 207
8.1 INTRODUCTION 207
8.2 SOLVING THE SCHROEDINGER EQUATION FOR THE SPHERICALLY SYMMETRIC
EIGENFUNCTIONS 209
8.2.1 A FINAL COMMENT: THE SYSTEM OF ATOMIC UNITS 216
8.3 DISCUSSION OF THE RESULTS 217
8.3.1 CHECKING THE CLASSICAL LIMIT H 0 OR M OO FOR THE GROUND STATE OF
THE HYDROGEN ATOM 217
8.3.2 ENERGY QUANTIZATION AND ATOMIC STABILITY 217
8.3.3 THE SIZE OF THE ATOM AND THE UNCERTAINTY PRINCIPLE: THE MYSTERY OF
ATOMIC STABILITY FROM ANOTHER PERSPECTIVE 218
8.3.4 ATOMIC INCOMPRESSIBILITY AND THE UNCERTAINTY PRINCIPLE 221
8.3.5 MORE ON THE GROUND STATE OF THE ATOM. MEAN AND MOST PROBABLE
DISTANCE OF THE ELECTRON FROM THE NUCLEUS 221
8.3.6 REVISITING THE NOTION OF *ATOMIC RADIUS*: HOW PROBABLE IS IT TO
FIND
THE ELECTRON WITHIN THE *VOLUME* THAT THE ATOM SUPPOSEDLY
OCCUPIES? 222
8.3.7 AN APPARENT PARADOX: AFTER ALL, WHERE IS IT MOST LIKELY TO FIND
THE
ELECTRON? NEAR THE NUCLEUS OR ONE BOHR RADIUS AWAY FROM IT? 223
8.3.8 WHAT FRACTION OF ITS TIME DOES THE ELECTRON SPEND IN THE
CLASSICALLY
FORBIDDEN REGION OF THE ATOM? 223
8.3.9 IS THE BOHR THEORY FOR THE HYDROGEN ATOM REALLY WRONG? COMPARISON
WITH QUANTUM MECHANICS 225
8.4 WHAT IS THE ELECTRON DOING IN THE HYDROGEN ATOM AFTER ALL? A FIRST
DISCUSSION ON THE BASIC QUESTIONS OF QUANTUM MECHANICS 226
9 THE HYDROGEN ATOM. II: SOLUTIONS WITH ANGULAR
DEPENDENCE 231
9.1 INTRODUCTION 231
9.2 THE SCHROEDINGER EQUATION IN AN ARBITRARY CENTRAL POTENTIAL:
SEPARATION OF VARIABLES 232
9.2.1 SEPARATION OF RADIAL FROM ANGULAR VARIABLES 232
9.2.2 THE RADIAL SCHROEDINGER EQUATION: PHYSICAL INTERPRETATION OF THE
CENTRIFUGAL TERM AND CONNECTION TO THE ANGULAR EQUATION 235
9.2.3 SOLUTION OF THE ANGULAR EQUATION: EIGENVALUES AND EIGENFUNCTIONS
OF
ANGULAR MOMENTUM 237
9.2.3.1 SOLVING THE EQUATION FOR O 238
9.2.3.2 SOLVING THE EQUATION FOR 0 239
9.2.4 SUMMARY OF RESULTS FOR AN ARBITRARY CENTRAL POTENTIAL 243
9.3 THE HYDROGEN ATOM 246
9.3.1 SOLUTION OF THE RADIAL EQUATION FOR THE COULOMB POTENTIAL 246
9.3.2 EXPLICIT CONSTRUCTION OF THE FIRST FEW EIGENFUNCTIONS 249
9.3.2.1 N = 1: THE GROUND STATE 250
9.3.2.2 N = 2 : THE FIRST EXCITED STATES 250
9.3.3 DISCUSSION OF THE RESULTS 254
9.3.3.1 THE ENERGY-LEVEL DIAGRAM 254
9.3.3.2 DEGENERACY OF THE ENERGY SPECTRUM FOR A COULOMB POTENTIAL:
ROTATIONAL AND ACCIDENTAL DEGENERACY 255
9.3.3.3 REMOVAL OF ROTATIONAL AND HYDROGENIC DEGENERACY 257
9.3.S.4 THE GROUND STATE IS ALWAYS NONDEGENERATE AND HAS THE FULL
SYMMETRY OF THE PROBLEM 257
9.33.5 SPECTROSCOPIC NOTATION FOR ATOMIC STATES 258
9.3.3.6 THE CONCEPT* OF THE ORBITAL: S AND
P ORBITALS 258
9.33.7 QUANTUM ANGULAR MOMENTUM: A RATHER STRANGE VECTOR 261
9.3.3.5 ALLOWED AND FORBIDDEN TRANSITIONS IN THE HYDROGEN ATOM:
CONSERVATION OF ANGULAR MOMENTUM AND SELECTION RULES 263
10 ATOMS IN A MAGNETIC FIELD AND THE EMERGENCE OF SPIN 267
10.1 INTRODUCTION 267
10.2 ATOMIC ELECTRONS AS MICROSCOPIC MAGNETS: MAGNETIC MOMENT AND
ANGULAR MOMENTUM 270
10.3 THE ZEEMAN EFFECT AND THE EVIDENCE FOR THE EXISTENCE OF SPIN 274
10.4 THE STERN-GERLACH EXPERIMENT: UNEQUIVOCAL EXPERIMENTAL
CONFIRMATION OF THE EXISTENCE OF SPIN 278
10.4.1 PRELIMINARY INVESTIGATION: A PLAUSIBLE THEORETICAL DESCRIPTION
OF SPIN 278
10.4.2 THE EXPERIMENT AND ITS RESULTS 280
10.5 WHAT IS SPIN? 284
10.5.1 SPIN IS NO SELF-ROTATION 284
10.5.2 HOW IS SPIN DESCRIBED QUANTUM MECHANICALLY? 285
10.5.3 WHAT SPIN REALLY IS 291
10.6 TIME EVOLUTION OF SPIN IN A MAGNETIC FIELD 292
10.7 TOTAL ANGULAR MOMENTUM OF ATOMS: ADDITION OF ANGULAR
MOMENTA 295
10.7.1 THE EIGENVALUES 295
10.7.2 THE EIGENFUNCTIONS 300
11 IDENTICAL PARTICLES AND THE PAULI PRINCIPLE 305
11.1 INTRODUCTION 305
11.2 THE PRINCIPLE OF INDISTINGUISHABILITY OF IDENTICAL PARTICLES IN
QUANTUM
MECHANICS 305
11.3 INDISTINGUISHABILITY OF IDENTICAL PARTICLES AND THE PAULI PRINCIPLE
306
11.4 THE ROLE OF SPIN: COMPLETE FORMULATION OF THE PAULI PRINCIPLE 307
11.5 THE PAULI EXCLUSION PRINCIPLE 310
11.6 WHICH PARTICLES ARE FERMIONS AND WHICH ARE BOSONS 314
11.7 EXCHANGE DEGENERACY: THE PROBLEM AND ITS SOLUTION 317
PART III QUANTUM MECHANICS IN ACTION: THE STRUCTURE
OF MATTER 321
12 ATOMS: THE PERIODIC TABLE OF THE ELEMENTS 323
12.1 INTRODUCTION 323
12.2 ARRANGEMENT OF ENERGY LEVELS IN MANY-ELECTRON ATOMS:
THE SCREENING EFFECT 324
12.3 QUANTUM MECHANICAL EXPLANATION OF THE PERIODIC TABLE:
THE *SMALL PERIODIC TABLE* 327
12.3.1 POPULATING THE ENERGY LEVELS: THE SHELL MODEL 328
12.3.2 AN INTERESTING *DETAIL*: THE PAULI PRINCIPLE AND ATOMIC
MAGNETISM 329
12.3.3 QUANTUM MECHANICAL EXPLANATION OF VALENCE AND DIRECTIONALITY OF
CHEMICAL BONDS 331
12.3.4 QUANTUM MECHANICAL EXPLANATION OF CHEMICAL PERIODICITY: THE THIRD
ROW OF THE PERIODIC TABLE 332
12.3.5 IONIZATION ENERGY AND ITS ROLE IN CHEMICAL BEHAVIOR 334
12.3.6 EXAMPLES 338
12.4 APPROXIMATE CALCULATIONS IN ATOMS: PERTURBATION THEORY AND THE
VARIATIONAL METHOD 341
12.4.1 PERTURBATION THEORY 342
12.4.2 VARIATIONAL METHOD 346
13 MOLECULES. I: ELEMENTARY THEORY OF THE CHEMICAL BOND 351
13.1 INTRODUCTION 351
13.2 THE DOUBLE-WELL MODEL OF CHEMICAL BONDING 352
13.2.1 THE SYMMETRIC DOUBLE WELL 352
13.2.2 THE ASYMMETRIC DOUBLE WELL 356
13.3 EXAMPLES OF SIMPLE MOLECULES 360
13.3.1 THE HYDROGEN MOLECULE H2 360
13.3.2 THE HELIUM *MOLECULE* HE2 363
13.3.3 THE LITHIUM MOLECULE LI2 364
13.3.4 THE OXYGEN MOLECULE 0 2 364
13.3.5 THE NITROGEN MOLECULE N2 366
13.3.6 THE WATER MOLECULE H20 367
13.3.7 HYDROGEN BONDS: FROM THE WATER MOLECULE TO BIOMOLECULES 370
13.3.8 THE AMMONIA MOLECULE NH3 373
13.4 MOLECULAR SPECTRA 377
13.4.1 ROTATIONAL SPECTRUM 378
13.4.2 VIBRATIONAL SPECTRUM 382
13.4.3 THE VIBRATIONAL-ROTATIONAL SPECTRUM 385
14 MOLECULES. II: THE CHEMISTRY OF CARBON 393
14.1 INTRODUCTION 393
14.2 HYBRIDIZATION: THE FIRST BASIC DEVIATION FROM THE ELEMENTARY THEORY
OF THE CHEMICAL BOND 393
14.2.1 THE CH4 MOLECULE ACCORDING TO THE ELEMENTARY THEORY: AN
ERRONEOUS PREDICTION 393
14.2.2 HYBRIDIZED ORBITALS AND THE CH4 MOLECULE 395
14.2.3 TOTAL AND PARTIAL HYBRIDIZATION 401
14.2.4 THE NEED FOR PARTIAL HYBRIDIZATION: THE MOLECULES C2H4, C2H2, AND
C2H6 404
14.2.5 APPLICATION OF HYBRIDIZATION THEORY TO CONJUGATED
HYDROCARBONS 408
14.2.6 ENERGY BALANCE OF HYBRIDIZATION AND APPLICATION TO INORGANIC
MOLECULES 409
14.3 DELOCALIZATION: THE SECOND BASIC DEVIATION FROM THE ELEMENTARY
THEORY OF THE CHEMICAL BOND 414
14.3.1 A CLOSER LOOK AT THE BENZENE MOLECULE 414
14.3.2 AN ELEMENTARY THEORY OF DELOCALIZATION: THE FREE-ELECTRON
MODEL 417
14.3.3 LCAO THEORY FOR CONJUGATED HYDROCARBONS. I: CYCLIC CHAINS 418
14.3.4 LCAO THEORY FOR CONJUGATED HYDROCARBONS. II: LINEAR CHAINS 424
14.3.5 DELOCALIZATION ON CARBON CHAINS: GENERAL REMARKS 427
14.3.6 DELOCALIZATION IN TWO-DIMENSIONAL ARRAYS OF P ORBITALS: GRAPHENE
AND
FULLERENES 429
15 SOLIDS: CONDUCTORS, SEMICONDUCTORS, INSULATORS 439
15.1 INTRODUCTION 439
15.2 PERIODICITY AND BAND STRUCTURE 439
15.3 BAND STRUCTURE AND THE MYSTERY OF CONDUCTIVITY.* CONDUCTORS,
SEMICONDUCTORS, INSULATORS 441
15.3.1 FAILURE OF THE CLASSICAL THEORY 441
15.3.2 THE QUANTUM EXPLANATION 443
15.4 CRYSTAL MOMENTUM, EFFECTIVE MASS, AND ELECTRON MOBILITY 447
15.5 FERMI ENERGY AND DENSITY OF STATES 453
15.5.1 FERMI ENERGY IN THE FREE-ELECTRON MODEL 453
15.5.2 DENSITY OF STATES IN THE FREE-ELECTRON MODEL 457
15.5.3 DISCUSSION OF THE RESULTS: SHARING OF AVAILABLE SPACE BY THE
PARTICLES OF
A FERMI GAS 460
15.5.4 A CLASSIC APPLICATION: THE ANOMALY* OF THE ELECTRONIC SPECIFIC
HEAT
OF METALS 463
16 MATTER AND LIGHT: THE INTERACTION OF ATOMS WITH
ELECTROMAGNETIC RADIATION 469
16.1 INTRODUCTION 469
16.2 THE FOUR FUNDAMENTAL PROCESSES: RESONANCE, SCATTERING, IONIZATION,
AND SPONTANEOUS EMISSION 471
16.3 QUANTITATIVE DESCRIPTION OF THE FUNDAMENTAL PROCESSES: TRANSITION
RATE, EFFECTIVE CROSS SECTION, MEAN FREE PATH 473
16.3.1 TRANSITION RATE: THE FUNDAMENTAL CONCEPT 473
16.3.2 EFFECTIVE CROSS SECTION AND MEAN FREE PATH 475
16.3.3 SCATTERING CROSS SECTION: AN INSTRUCTIVE EXAMPLE 476
16.4 MATTER AND LIGHT IN RESONANCE. I: THEORY 478
16.4.1 CALCULATION OF THE EFFECTIVE CROSS SECTION: FERMI S RULE 478
16.4.2 DISCUSSION OF THE RESULT: ORDER-OF-MAGNITUDE ESTIMATES AND
SELECTION
RULES 481
16.4.3 SELECTION RULES: ALLOWED AND FORBIDDEN TRANSITIONS 483
16.5 MATTER AND LIGHT IN RESONANCE. II: THE LASER 487
16.5.1 THE OPERATION PRINCIPLE: POPULATION INVERSION AND THE THRESHOLD
CONDITION 487
16.5.2 MAIN PROPERTIES OF LASER LIGHT 491
16.5.2.1 PHASE COHERENCE 491
16.5.2.2 DIRECTIONALITY 491
16.5.2.3 INTENSITY 491
16.5.2.4 MONOCHROMATICITY 492
16.6 SPONTANEOUS EMISSION 494
16.7 THEORY OF TIME-DEPENDENT PERTURBATIONS: FERMI S RULE 499
16.7.1 APPROXIMATE CALCULATION OF TRANSITION PROBABILITIES
PN_+M(T) FOR AN
ARBITRARY TRANSIENT* PERTURBATION V(T) 499
16.7.2 THE ATOM UNDER THE INFLUENCE OF A SINUSOIDAL PERTURBATION:
FERMI*S RULE FOR RESONANCE TRANSITIONS 503
16.8 THE LIGHT ITSELF: POLARIZED PHOTONS AND THEIR QUANTUM MECHANICAL
DESCRIPTION 511
16.8.1 STATES OF LINEAR AND CIRCULAR POLARIZATION FOR PHOTONS 511
16.8.2 LINEAR AND CIRCULAR POLARIZERS 512
16.8.3 QUANTUM MECHANICAL DESCRIPTION OF POLARIZED PHOTONS 513
ONLINE SUPPLEMENT
1 THE PRINCIPLE OF WAVE-PARTICLE DUALITY: AN OVERVIEW
OS 1.1 REVIEW QUIZ
OS 1.1 DETERMINING PLANCK*S CONSTANT FROM EVERYDAY OBSERVATIONS
2 THE SCHROEDINGER EQUATION AND ITS STATISTICAL INTERPRETATION
052.1 REVIEW QUIZ
052.2 FURTHER STUDY OF HERMITIAN OPERATORS: THE CONCEPT OF THE
ADJOINT OPERATOR
052.3 LOCAL CONSERVATION OF PROBABILITY: THE PROBABILITY CURRENT
3 THE UNCERTAINTY PRINCIPLE
053.1 REVIEW QUIZ
053.2 COMMUTATOR ALGEBRA: CALCULATIONS TECHNIQUES
053.3 THE GENERALIZED UNCERTAINTY PRINCIPLE
053.4 EHRENFEST*S THEOREM: TIME EVOLUTION OF MEAN VALUES AND THE
CLASSICAL LIMIT
4 SQUARE POTENTIALS. I: DISCRETE SPECTRUM*BOUND STATES
054.1 REVIEW QUIZ
054.2 SQUARE WELL: A MORE ELEGANT GRAPHICAL SOLUTION FOR ITS EIGENVALUES
054.3 DEEP AND SHALLOW WELLS: APPROXIMATE ANALYTIC EXPRESSIONS FOR THEIR
EIGENVALUES
5 SQUARE POTENTIALS. II: CONTINUOUS SPECTRUM*SCATTERING
STATES
055.1 REVIEW QUIZ
055.2 QUANTUM MECHANICAL THEORY OF ALPHA DECAY
6 THE HARMONIE OSCILLATOR
086.1 REVIEW QUIZ
086.2 ALGEBRAIC SOLUTION OF THE HARMONIE OSCILLATOR: CREATION AND
ANNIHILATION OPERATORS
7 THE POLYNOMIAL METHOD: SYSTEMATIC THEORY AND APPLICATIONS
087.1 REVIEW QUIZ
087.2 AN ELEMENTARY METHOD FOR DISCOVERING EXACTLY SOLVABLE POTENTIALS
087.3 CLASSIC EXAMPLES OF EXACTLY SOLVABLE POTENTIALS: A COMPREHENSIVE
LIST
8 THE HYDROGEN ATOM. I: SPHERICALLY SYMMETRIC SOLUTIONS
088.1 REVIEW QUIZ
9 THE HYDROGEN ATOM. II: SOLUTIONS WITH ANGULAR DEPENDENCE
089.1 REVIEW QUIZ
089.2 CONSERVATION OF ANGULAR MOMENTUM IN CENTRAL POTENTIALS, AND ITS
CONSEQUENCES
089.3 SOLVING THE ASSOCIATED LEGENDRE EQUATION ON OUR OWN
10 ATOMS IN A MAGNETIC FIELD AND THE EMERGENCE OF SPIN
0810.1 REVIEW QUIZ
OS 10.2 ALGEBRAIC THEORY OF ANGULAR MOMENTUM AND SPIN
11 IDENTICAL PARTICLES AND THE PAULI PRINCIPLE
0811.1 REVIEW QUIZ
0811.2 DIRAC S FORMALISM: A BRIEF INTRODUCTION
12 ATOMS: THE PERIODIC TABLE OF THE ELEMENTS
0812.1 REVIEW QUIZ
0812.2 SYSTEMATIC PERTURBATION THEORY: APPLICATION TO THE STARK EFFECT
AND
ATOMIC POLARIZABILITY
13 MOLECULES. I: ELEMENTARY THEORY OF THE CHEMICAL BOND
0813.1 REVIEW QUIZ
14 MOLECULES. II: THE CHEMISTRY OF CARBON
0814.1 REVIEW QUIZ
0814.2 THE LCAO METHOD AND MATRIX MECHANICS
0814.3 EXTENSION OF THE LCAO METHOD FOR NONZERO OVERLAP
15 SOLIDS: CONDUCTORS, SEMICONDUCTORS, INSULATORS
0815.1 REVIEW QUIZ
OS 15.2 FLOQUETS THEOREM: MATHEMATICAL STUDY OF THE BAND STRUCTURE FOR
AN
ARBITRARY PERIODIC POTENTIAL V(X)
0815.3 COMPRESSIBILITY OF CONDENSED MATTER: THE BULK MODULUS
0815.4 THE PAULI PRINCIPLE AND GRAVITATIONAL COLLAPSE: THE CHANDRASEKHAR
LIMIT
16 MATTER AND LIGHT: THE INTERACTION OF ATOMS WITH
ELECTROMAGNETIC RADIATION
0816.1 REVIEW QUIZ
0816.2 RESONANCE TRANSITIONS BEYOND FERMI*S RULE: RADI OSCILLATIONS
0816.3 RESONANCE TRANSITIONS AT RADIO FREQUENCIES: NUCLEAR MAGNETIC
RESONANCE (NMR)
APPENDIX 519
BIBLIOGRAPHY 523
INDEX 527
|
any_adam_object | 1 |
author | Trachanas, Stefanos |
author2 | Antonoyiannakis, Manolis Tsetseris, Leonidas |
author2_role | edt edt |
author2_variant | m a ma l t lt |
author_GND | (DE-588)1156814499 |
author_facet | Trachanas, Stefanos Antonoyiannakis, Manolis Tsetseris, Leonidas |
author_role | aut |
author_sort | Trachanas, Stefanos |
author_variant | s t st |
building | Verbundindex |
bvnumber | BV043586294 |
classification_rvk | UK 1000 UK 1200 |
ctrlnum | (OCoLC)1019894891 (DE-599)DNB1079290656 |
dewey-full | 530 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530 |
dewey-search | 530 |
dewey-sort | 3530 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02231nam a2200505 c 4500</leader><controlfield tag="001">BV043586294</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180615 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">160606s2018 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">15,N49</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1079290656</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527412471</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-3-527-41247-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1019894891</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1079290656</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1000</subfield><subfield code="0">(DE-625)145785:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1200</subfield><subfield code="0">(DE-625)145792:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Trachanas, Stefanos</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to quantum physics</subfield><subfield code="b">a first course for physicists, chemists, materials scientists, and engineers</subfield><subfield code="c">Stefanos Trachanas ; translated and edited by: Manolis Antonoyiannakis and Leonidas Tsetseris</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxviii, 536 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenchemie</subfield><subfield code="0">(DE-588)4047979-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantenchemie</subfield><subfield code="0">(DE-588)4047979-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antonoyiannakis, Manolis</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsetseris, Leonidas</subfield><subfield code="0">(DE-588)1156814499</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, ePDF</subfield><subfield code="z">978-3-527-67665-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, ePub</subfield><subfield code="z">978-3-527-67668-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, Mobi</subfield><subfield code="z">978-3-527-67667-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41247-1/</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029000839&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029000839</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV043586294 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:30:18Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527412471 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029000839 |
oclc_num | 1019894891 |
open_access_boolean | |
owner | DE-29T DE-355 DE-BY-UBR DE-11 DE-92 DE-703 DE-19 DE-BY-UBM DE-20 DE-634 DE-706 |
owner_facet | DE-29T DE-355 DE-BY-UBR DE-11 DE-92 DE-703 DE-19 DE-BY-UBM DE-20 DE-634 DE-706 |
physical | xxviii, 536 Seiten Illustrationen, Diagramme |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Trachanas, Stefanos Verfasser aut An introduction to quantum physics a first course for physicists, chemists, materials scientists, and engineers Stefanos Trachanas ; translated and edited by: Manolis Antonoyiannakis and Leonidas Tsetseris Weinheim Wiley-VCH [2018] © 2018 xxviii, 536 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Quantenchemie (DE-588)4047979-1 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Quantenmechanik (DE-588)4047989-4 s Quantenchemie (DE-588)4047979-1 s DE-604 Antonoyiannakis, Manolis edt Tsetseris, Leonidas (DE-588)1156814499 edt Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, ePDF 978-3-527-67665-1 Erscheint auch als Online-Ausgabe, ePub 978-3-527-67668-2 Erscheint auch als Online-Ausgabe, Mobi 978-3-527-67667-5 http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41247-1/ Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029000839&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Trachanas, Stefanos An introduction to quantum physics a first course for physicists, chemists, materials scientists, and engineers Quantenchemie (DE-588)4047979-1 gnd Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4047979-1 (DE-588)4047989-4 (DE-588)4123623-3 |
title | An introduction to quantum physics a first course for physicists, chemists, materials scientists, and engineers |
title_auth | An introduction to quantum physics a first course for physicists, chemists, materials scientists, and engineers |
title_exact_search | An introduction to quantum physics a first course for physicists, chemists, materials scientists, and engineers |
title_full | An introduction to quantum physics a first course for physicists, chemists, materials scientists, and engineers Stefanos Trachanas ; translated and edited by: Manolis Antonoyiannakis and Leonidas Tsetseris |
title_fullStr | An introduction to quantum physics a first course for physicists, chemists, materials scientists, and engineers Stefanos Trachanas ; translated and edited by: Manolis Antonoyiannakis and Leonidas Tsetseris |
title_full_unstemmed | An introduction to quantum physics a first course for physicists, chemists, materials scientists, and engineers Stefanos Trachanas ; translated and edited by: Manolis Antonoyiannakis and Leonidas Tsetseris |
title_short | An introduction to quantum physics |
title_sort | an introduction to quantum physics a first course for physicists chemists materials scientists and engineers |
title_sub | a first course for physicists, chemists, materials scientists, and engineers |
topic | Quantenchemie (DE-588)4047979-1 gnd Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | Quantenchemie Quantenmechanik Lehrbuch |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41247-1/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029000839&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT trachanasstefanos anintroductiontoquantumphysicsafirstcourseforphysicistschemistsmaterialsscientistsandengineers AT antonoyiannakismanolis anintroductiontoquantumphysicsafirstcourseforphysicistschemistsmaterialsscientistsandengineers AT tsetserisleonidas anintroductiontoquantumphysicsafirstcourseforphysicistschemistsmaterialsscientistsandengineers AT wileyvch anintroductiontoquantumphysicsafirstcourseforphysicistschemistsmaterialsscientistsandengineers |