Machine learning for evolution strategies:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Cham]
Springer
[2016]
|
Schriftenreihe: | Studies in Big Data
volume 20 (2016) |
Schlagworte: | |
Online-Zugang: | BTU01 FAB01 FAW01 FHA01 FHI01 FHN01 FHR01 FKE01 FRO01 FWS01 FWS02 UBY01 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | 1 Online-Ressource (IX, 124 Seiten) |
ISBN: | 9783319333830 |
DOI: | 10.1007/978-3-319-33383-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043579626 | ||
003 | DE-604 | ||
005 | 20160908 | ||
007 | cr|uuu---uuuuu | ||
008 | 160601s2016 |||| o||u| ||||||eng d | ||
020 | |a 9783319333830 |c Online |9 978-3-319-33383-0 | ||
024 | 7 | |a 10.1007/978-3-319-33383-0 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-319-33383-0 | ||
035 | |a (OCoLC)951072361 | ||
035 | |a (DE-599)BVBBV043579626 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-1046 |a DE-1043 |a DE-Aug4 |a DE-898 |a DE-861 |a DE-573 |a DE-859 |a DE-863 |a DE-634 |a DE-862 |a DE-92 | ||
082 | 0 | |a 006.3 |2 23 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Kramer, Oliver |e Verfasser |0 (DE-588)1107031117 |4 aut | |
245 | 1 | 0 | |a Machine learning for evolution strategies |c Oliver Kramer |
264 | 1 | |a [Cham] |b Springer |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a 1 Online-Ressource (IX, 124 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Studies in Big Data |v volume 20 (2016) | |
650 | 4 | |a Engineering | |
650 | 4 | |a Data mining | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Computer simulation | |
650 | 4 | |a Sociophysics | |
650 | 4 | |a Econophysics | |
650 | 4 | |a Computational intelligence | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Simulation and Modeling | |
650 | 4 | |a Data Mining and Knowledge Discovery | |
650 | 4 | |a Socio- and Econophysics, Population and Evolutionary Models | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Künstliche Intelligenz | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-319-33381-6 |
830 | 0 | |a Studies in Big Data |v volume 20 (2016) |w (DE-604)BV041583423 |9 20 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-33383-0 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028994299&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028994299&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2016 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028994299 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-319-33383-0 |l BTU01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-33383-0 |l FAB01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-33383-0 |l FAW01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-33383-0 |l FHA01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-33383-0 |l FHI01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-33383-0 |l FHN01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-33383-0 |l FHR01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-33383-0 |l FKE01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-33383-0 |l FRO01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-33383-0 |l FWS01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-33383-0 |l FWS02 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-33383-0 |l UBY01 |p ZDB-2-ENG |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 618868 |
---|---|
_version_ | 1806179773384228864 |
adam_text | MACHINE LEARNING FOR EVOLUTION STRATEGIES
/ KRAMER, OLIVER
: 2016
TABLE OF CONTENTS / INHALTSVERZEICHNIS
PART I EVOLUTION STRATEGIES
PART II MACHINE LEARNING
PART III SUPERVISED LEARNING
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
MACHINE LEARNING FOR EVOLUTION STRATEGIES
/ KRAMER, OLIVER
: 2016
ABSTRACT / INHALTSTEXT
THIS BOOK INTRODUCES NUMEROUS ALGORITHMIC HYBRIDIZATIONS BETWEEN BOTH
WORLDS THAT SHOW HOW MACHINE LEARNING CAN IMPROVE AND SUPPORT EVOLUTION
STRATEGIES. THE SET OF METHODS COMPRISES COVARIANCE MATRIX ESTIMATION,
META-MODELING OF FITNESS AND CONSTRAINT FUNCTIONS, DIMENSIONALITY
REDUCTION FOR SEARCH AND VISUALIZATION OF HIGH-DIMENSIONAL OPTIMIZATION
PROCESSES, AND CLUSTERING-BASED NICHING. AFTER GIVING AN INTRODUCTION TO
EVOLUTION STRATEGIES AND MACHINE LEARNING, THE BOOK BUILDS THE BRIDGE
BETWEEN BOTH WORLDS WITH AN ALGORITHMIC AND EXPERIMENTAL PERSPECTIVE.
EXPERIMENTS MOSTLY EMPLOY A (1+1)-ES AND ARE IMPLEMENTED IN PYTHON USING
THE MACHINE LEARNING LIBRARY SCIKIT-LEARN. THE EXAMPLES ARE CONDUCTED ON
TYPICAL BENCHMARK PROBLEMS ILLUSTRATING ALGORITHMIC CONCEPTS AND THEIR
EXPERIMENTAL BEHAVIOR. THE BOOK CLOSES WITH A DISCUSSION OF RELATED
LINES OF RESEARCH
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Kramer, Oliver |
author_GND | (DE-588)1107031117 |
author_facet | Kramer, Oliver |
author_role | aut |
author_sort | Kramer, Oliver |
author_variant | o k ok |
building | Verbundindex |
bvnumber | BV043579626 |
classification_rvk | ST 300 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-319-33383-0 (OCoLC)951072361 (DE-599)BVBBV043579626 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-3-319-33383-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03856nmm a2200769zcb4500</leader><controlfield tag="001">BV043579626</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160908 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160601s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319333830</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-33383-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-33383-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-319-33383-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)951072361</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043579626</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kramer, Oliver</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1107031117</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning for evolution strategies</subfield><subfield code="c">Oliver Kramer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Cham]</subfield><subfield code="b">Springer</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 124 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Studies in Big Data</subfield><subfield code="v">volume 20 (2016)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sociophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Econophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation and Modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Mining and Knowledge Discovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Socio- and Econophysics, Population and Evolutionary Models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-319-33381-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Studies in Big Data</subfield><subfield code="v">volume 20 (2016)</subfield><subfield code="w">(DE-604)BV041583423</subfield><subfield code="9">20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-33383-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028994299&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028994299&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2016</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028994299</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-33383-0</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-33383-0</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-33383-0</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-33383-0</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-33383-0</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-33383-0</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-33383-0</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-33383-0</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-33383-0</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-33383-0</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-33383-0</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-33383-0</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043579626 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T12:14:20Z |
institution | BVB |
isbn | 9783319333830 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028994299 |
oclc_num | 951072361 |
open_access_boolean | |
owner | DE-706 DE-1046 DE-1043 DE-Aug4 DE-898 DE-BY-UBR DE-861 DE-573 DE-859 DE-863 DE-BY-FWS DE-634 DE-862 DE-BY-FWS DE-92 |
owner_facet | DE-706 DE-1046 DE-1043 DE-Aug4 DE-898 DE-BY-UBR DE-861 DE-573 DE-859 DE-863 DE-BY-FWS DE-634 DE-862 DE-BY-FWS DE-92 |
physical | 1 Online-Ressource (IX, 124 Seiten) |
psigel | ZDB-2-ENG ZDB-2-ENG_2016 |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Springer |
record_format | marc |
series | Studies in Big Data |
series2 | Studies in Big Data |
spellingShingle | Kramer, Oliver Machine learning for evolution strategies Studies in Big Data Engineering Data mining Artificial intelligence Computer simulation Sociophysics Econophysics Computational intelligence Computational Intelligence Simulation and Modeling Data Mining and Knowledge Discovery Socio- and Econophysics, Population and Evolutionary Models Artificial Intelligence (incl. Robotics) Ingenieurwissenschaften Künstliche Intelligenz Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4193754-5 |
title | Machine learning for evolution strategies |
title_auth | Machine learning for evolution strategies |
title_exact_search | Machine learning for evolution strategies |
title_full | Machine learning for evolution strategies Oliver Kramer |
title_fullStr | Machine learning for evolution strategies Oliver Kramer |
title_full_unstemmed | Machine learning for evolution strategies Oliver Kramer |
title_short | Machine learning for evolution strategies |
title_sort | machine learning for evolution strategies |
topic | Engineering Data mining Artificial intelligence Computer simulation Sociophysics Econophysics Computational intelligence Computational Intelligence Simulation and Modeling Data Mining and Knowledge Discovery Socio- and Econophysics, Population and Evolutionary Models Artificial Intelligence (incl. Robotics) Ingenieurwissenschaften Künstliche Intelligenz Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Engineering Data mining Artificial intelligence Computer simulation Sociophysics Econophysics Computational intelligence Computational Intelligence Simulation and Modeling Data Mining and Knowledge Discovery Socio- and Econophysics, Population and Evolutionary Models Artificial Intelligence (incl. Robotics) Ingenieurwissenschaften Künstliche Intelligenz Maschinelles Lernen |
url | https://doi.org/10.1007/978-3-319-33383-0 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028994299&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028994299&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV041583423 |
work_keys_str_mv | AT krameroliver machinelearningforevolutionstrategies |