Rigid cohomology over Laurent series fields:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Cham]
Springer
[2016]
|
Schriftenreihe: | Algebra and applications
volume 21 |
Schlagworte: | |
Online-Zugang: | BTU01 FHR01 FRO01 TUM01 UBM01 UBT01 UBW01 UEI01 UPA01 URL des Erstveröffentlichers Inhaltsverzeichnis Abstract |
Beschreibung: | 1 Online-Ressource (X, 267 Seiten) |
ISBN: | 9783319309514 |
DOI: | 10.1007/978-3-319-30951-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043546305 | ||
003 | DE-604 | ||
005 | 20220314 | ||
007 | cr|uuu---uuuuu | ||
008 | 160510s2016 |||| o||u| ||||||eng d | ||
020 | |a 9783319309514 |c Online |9 978-3-319-30951-4 | ||
024 | 7 | |a 10.1007/978-3-319-30951-4 |2 doi | |
035 | |a (ZDB-2-SMA)978-3-319-30951-4 | ||
035 | |a (OCoLC)950730592 | ||
035 | |a (DE-599)BVBBV043546305 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-20 |a DE-739 |a DE-634 |a DE-898 |a DE-861 |a DE-703 |a DE-824 |a DE-83 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
084 | |a MAT 143f |2 stub | ||
100 | 1 | |a Lazda, Christopher |e Verfasser |0 (DE-588)1104274930 |4 aut | |
245 | 1 | 0 | |a Rigid cohomology over Laurent series fields |c Christopher Lazda, Ambrus Pál |
264 | 1 | |a [Cham] |b Springer |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a 1 Online-Ressource (X, 267 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Algebra and applications |v volume 21 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebraic geometry | |
650 | 4 | |a Number theory | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Kristalline Kohomologie |0 (DE-588)4494390-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verallgemeinerung |0 (DE-588)4316262-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Laurent-Reihe |0 (DE-588)4192933-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kristalline Kohomologie |0 (DE-588)4494390-8 |D s |
689 | 0 | 1 | |a Verallgemeinerung |0 (DE-588)4316262-9 |D s |
689 | 0 | 2 | |a Laurent-Reihe |0 (DE-588)4192933-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Pál, Ambrus |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-319-30950-7 |
830 | 0 | |a Algebra and applications |v volume 21 |w (DE-604)BV035482291 |9 21 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-30951-4 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028961668&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028961668&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2016 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028961668 | ||
966 | e | |u https://doi.org/10.1007/978-3-319-30951-4 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-30951-4 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-30951-4 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-30951-4 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-30951-4 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-30951-4 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-30951-4 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-30951-4 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-30951-4 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176206869823488 |
---|---|
adam_text | RIGID COHOMOLOGY OVER LAURENT SERIES FIELDS
/ LAZDA, CHRISTOPHER
: 2016
TABLE OF CONTENTS / INHALTSVERZEICHNIS
INTRODUCTION
FIRST DEFINITIONS AND BASIC PROPERTIES
FINITENESS WITH COEFFICIENTS VIA A LOCAL MONODROMY THEOREM
THE OVERCONVERGENT SITE, DESCENT, AND COHOMOLOGY WITH COMPACT SUPPORT
ABSOLUTE COEFFICIENTS AND ARITHMETIC APPLICATIONS
RIGID COHOMOLOGY
ADIC SPACES AND RIGID SPACES
COHOMOLOGICAL DESCENT
INDEX
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
RIGID COHOMOLOGY OVER LAURENT SERIES FIELDS
/ LAZDA, CHRISTOPHER
: 2016
ABSTRACT / INHALTSTEXT
IN THIS MONOGRAPH, THE AUTHORS DEVELOP A NEW THEORY OF P-ADIC COHOMOLOGY
FOR VARIETIES OVER LAURENT SERIES FIELDS IN POSITIVE CHARACTERISTIC,
BASED ON BERTHELOT S THEORY OF RIGID COHOMOLOGY. MANY MAJOR FUNDAMENTAL
PROPERTIES OF THESE COHOMOLOGY GROUPS ARE PROVEN, SUCH AS FINITE
DIMENSIONALITY AND COHOMOLOGICAL DESCENT, AS WELL AS INTERPRETATIONS IN
TERMS OF MONSKY-WASHNITZER COHOMOLOGY AND LE STUM S OVERCONVERGENT SITE.
APPLICATIONS OF THIS NEW THEORY TO ARITHMETIC QUESTIONS, SUCH AS
L-INDEPENDENCE AND THE WEIGHT MONODROMY CONJECTURE, ARE ALSO DISCUSSED.
THE CONSTRUCTION OF THESE COHOMOLOGY GROUPS, ANALOGOUS TO THE GALOIS
REPRESENTATIONS ASSOCIATED TO VARIETIES OVER LOCAL FIELDS IN MIXED
CHARACTERISTIC, FILLS A MAJOR GAP IN THE STUDY OF ARITHMETIC COHOMOLOGY
THEORIES OVER FUNCTION FIELDS. BY EXTENDING THE SCOPE OF EXISTING
METHODS, THE RESULTS PRESENTED HERE ALSO SERVE AS A FIRST STEP TOWARDS A
MORE GENERAL THEORY OF P-ADIC COHOMOLOGY OVER NON-PERFECT GROUND FIELDS.
RIGID COHOMOLOGY OVER LAURENT SERIES FIELDS WILL PROVIDE A USEFUL TOOL
FOR ANYONE INTERESTED IN THE ARITHMETIC OF VARIETIES OVER LOCAL FIELDS
OF POSITIVE CHARACTERISTIC. APPENDICES ON IMPORTANT BACKGROUND MATERIAL
SUCH AS RIGID COHOMOLOGY AND ADIC SPACES MAKE IT AS SELF-CONTAINED AS
POSSIBLE, AND AN IDEAL STARTING POINT FOR GRADUATE STUDENTS LOOKING TO
EXPLORE ASPECTS OF THE CLASSICAL THEORY OF RIGID COHOMOLOGY AND WITH AN
EYE TOWARDS FUTURE RESEARCH IN THE SUBJECT
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Lazda, Christopher Pál, Ambrus |
author_GND | (DE-588)1104274930 |
author_facet | Lazda, Christopher Pál, Ambrus |
author_role | aut aut |
author_sort | Lazda, Christopher |
author_variant | c l cl a p ap |
building | Verbundindex |
bvnumber | BV043546305 |
classification_tum | MAT 000 MAT 143f |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)978-3-319-30951-4 (OCoLC)950730592 (DE-599)BVBBV043546305 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-30951-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03392nmm a2200697zcb4500</leader><controlfield tag="001">BV043546305</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220314 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160510s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319309514</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-30951-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-30951-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)978-3-319-30951-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)950730592</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043546305</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 143f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lazda, Christopher</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1104274930</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rigid cohomology over Laurent series fields</subfield><subfield code="c">Christopher Lazda, Ambrus Pál</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Cham]</subfield><subfield code="b">Springer</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 267 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Algebra and applications</subfield><subfield code="v">volume 21</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kristalline Kohomologie</subfield><subfield code="0">(DE-588)4494390-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verallgemeinerung</subfield><subfield code="0">(DE-588)4316262-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laurent-Reihe</subfield><subfield code="0">(DE-588)4192933-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kristalline Kohomologie</subfield><subfield code="0">(DE-588)4494390-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verallgemeinerung</subfield><subfield code="0">(DE-588)4316262-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Laurent-Reihe</subfield><subfield code="0">(DE-588)4192933-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pál, Ambrus</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-319-30950-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Algebra and applications</subfield><subfield code="v">volume 21</subfield><subfield code="w">(DE-604)BV035482291</subfield><subfield code="9">21</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-30951-4</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028961668&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028961668&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2016</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028961668</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-30951-4</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-30951-4</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-30951-4</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-30951-4</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-30951-4</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-30951-4</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-30951-4</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-30951-4</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-30951-4</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043546305 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:28:30Z |
institution | BVB |
isbn | 9783319309514 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028961668 |
oclc_num | 950730592 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-20 DE-739 DE-634 DE-898 DE-BY-UBR DE-861 DE-703 DE-824 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-20 DE-739 DE-634 DE-898 DE-BY-UBR DE-861 DE-703 DE-824 DE-83 |
physical | 1 Online-Ressource (X, 267 Seiten) |
psigel | ZDB-2-SMA ZDB-2-SMA_2016 |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Springer |
record_format | marc |
series | Algebra and applications |
series2 | Algebra and applications |
spelling | Lazda, Christopher Verfasser (DE-588)1104274930 aut Rigid cohomology over Laurent series fields Christopher Lazda, Ambrus Pál [Cham] Springer [2016] © 2016 1 Online-Ressource (X, 267 Seiten) txt rdacontent c rdamedia cr rdacarrier Algebra and applications volume 21 Mathematics Algebraic geometry Number theory Algebraic Geometry Number Theory Mathematik Kristalline Kohomologie (DE-588)4494390-8 gnd rswk-swf Verallgemeinerung (DE-588)4316262-9 gnd rswk-swf Laurent-Reihe (DE-588)4192933-0 gnd rswk-swf Kristalline Kohomologie (DE-588)4494390-8 s Verallgemeinerung (DE-588)4316262-9 s Laurent-Reihe (DE-588)4192933-0 s DE-604 Pál, Ambrus Verfasser aut Erscheint auch als Druckausgabe 978-3-319-30950-7 Algebra and applications volume 21 (DE-604)BV035482291 21 https://doi.org/10.1007/978-3-319-30951-4 Verlag URL des Erstveröffentlichers Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028961668&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028961668&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Abstract |
spellingShingle | Lazda, Christopher Pál, Ambrus Rigid cohomology over Laurent series fields Algebra and applications Mathematics Algebraic geometry Number theory Algebraic Geometry Number Theory Mathematik Kristalline Kohomologie (DE-588)4494390-8 gnd Verallgemeinerung (DE-588)4316262-9 gnd Laurent-Reihe (DE-588)4192933-0 gnd |
subject_GND | (DE-588)4494390-8 (DE-588)4316262-9 (DE-588)4192933-0 |
title | Rigid cohomology over Laurent series fields |
title_auth | Rigid cohomology over Laurent series fields |
title_exact_search | Rigid cohomology over Laurent series fields |
title_full | Rigid cohomology over Laurent series fields Christopher Lazda, Ambrus Pál |
title_fullStr | Rigid cohomology over Laurent series fields Christopher Lazda, Ambrus Pál |
title_full_unstemmed | Rigid cohomology over Laurent series fields Christopher Lazda, Ambrus Pál |
title_short | Rigid cohomology over Laurent series fields |
title_sort | rigid cohomology over laurent series fields |
topic | Mathematics Algebraic geometry Number theory Algebraic Geometry Number Theory Mathematik Kristalline Kohomologie (DE-588)4494390-8 gnd Verallgemeinerung (DE-588)4316262-9 gnd Laurent-Reihe (DE-588)4192933-0 gnd |
topic_facet | Mathematics Algebraic geometry Number theory Algebraic Geometry Number Theory Mathematik Kristalline Kohomologie Verallgemeinerung Laurent-Reihe |
url | https://doi.org/10.1007/978-3-319-30951-4 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028961668&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028961668&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV035482291 |
work_keys_str_mv | AT lazdachristopher rigidcohomologyoverlaurentseriesfields AT palambrus rigidcohomologyoverlaurentseriesfields |