Discrete Fourier and wavelet transforms: an introduction through linear algebra with applications to signal processing
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo
World Scientific
[2016]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverzeichnis Seite 283-284 |
Beschreibung: | xii, 288 Seiten Illustrationen, Diagramme 26 cm |
ISBN: | 9789814725767 9789814725774 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043530542 | ||
003 | DE-604 | ||
005 | 20160610 | ||
007 | t | ||
008 | 160427s2016 a||| |||| 00||| eng d | ||
010 | |a 2015043388 | ||
020 | |a 9789814725767 |c : hardcover : alk. paper |9 978-981-4725-76-7 | ||
020 | |a 9789814725774 |c : pbk. : alk. paper |9 978-981-4725-77-4 | ||
035 | |a (OCoLC)945685433 | ||
035 | |a (DE-599)GBV845603345 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-862 |a DE-92 |a DE-739 |a DE-384 |a DE-898 | ||
082 | 0 | |a 515.723 | |
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
084 | |a MAT 420f |2 stub | ||
100 | 1 | |a Goodman, Roe |d 1938- |e Verfasser |0 (DE-588)123134943 |4 aut | |
245 | 1 | 0 | |a Discrete Fourier and wavelet transforms |b an introduction through linear algebra with applications to signal processing |c Roe W. Goodman (Rutgers University, USA) |
264 | 1 | |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo |b World Scientific |c [2016] | |
300 | |a xii, 288 Seiten |b Illustrationen, Diagramme |c 26 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverzeichnis Seite 283-284 | ||
650 | 4 | |a aFourier transformationsvTextbooks | |
650 | 4 | |a aAlgebras, LinearvTextbooks | |
650 | 4 | |a aSignal processingxMathematicsvTextbooks | |
650 | 4 | |a aWavelets (Mathematics)vTextbooks | |
650 | 0 | 7 | |a Wavelet-Analyse |0 (DE-588)4760859-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | 1 | |a Wavelet-Analyse |0 (DE-588)4760859-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028946250&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-028946250 |
Datensatz im Suchindex
DE-BY-862_location | 2000 |
---|---|
DE-BY-FWS_call_number | 2000/SK 450 G653 |
DE-BY-FWS_katkey | 618047 |
DE-BY-FWS_media_number | 083000507966 |
_version_ | 1806176381984309248 |
adam_text | Contents
Preface v
1. Linear Algebra and Signal Processing 1
1.1 Overview .......................................................... 1
1.2 Sampling and Quantization.......................................... 2
1.3 Vector Spaces...................................................... 3
1.4 Bases and Dual Bases .............................................. 6
1.5 Linear Transformations and Matrices............................... 10
1.5.1 Matrix form of a linear transformation ................... 11
1.5.2 Direct sums of vector spaces.............................. 14
1.5.3 Partitioned matrices and block multiplication............. 14
1.6 Vector Graphics and Animation..................................... 16
1.6.1 Geometric transformations of images ...................... 17
1.6.2 Affine transformations.................................... 20
1.7 Inner Products, Orthogonal Projections, and Unitary Matrices . . 21
1.8 Fourier Series.................................................... 27
1.9 Computer Explorations............................................. 30
1.9.1 Sampling and quantizing an audio signal................... 30
1.9.2 Vector graphics .......................................... 33
1.10 Exercises......................................................... 36
2. Discrete Fourier Transform 41
2.1 Overview ......................................................... 41
2.2 Sampling and Aliasing............................................. 41
2.3 Discrete Fourier Transform and Fourier Matrix..................... 45
2.4 Shift-Invariant Transformations and Circulant Matrices ........... 48
2.4.1 Moving averages and shift operator........................ 48
2.4.2 Shift-iriyariant transformations.......................... 50
2.4.3 Eigenvectors and eigenvalues of circulant matrices........ 52
2.5 Circular Convolution and Filters.................................. 53
ix
x Contents
2.6 Downsampling and Fast Fourier Transform ............................ 59
2.7 Computer Explorations............................................... 62
2.7.1 Fourier matrix and sampling................................. 62
2.7.2 Applications of the discrete Fourier transform ............. 64
2.7.3 Circulant matrices and circular convolution................. 67
2.7.4 Fast Fourier transform ..................................... 69
2.8 Exercises........................................................... 70
3. Discrete Wavelet Transforms 73
3.1 Overview ........................................................... 73
3.2 Haar Wavelet Transform for Digital Signals.......................... 74
3.2.1 Basic example............................................... 74
3.2.2 Prediction and update transformations....................... 77
3.3 Multiple Scale Haar Wavelet Transform............................... 80
3.3.1 Matrix description of multiresolution representation .... 80
3.3.2 Signal processing using the multiresolution representation . 83
3.4 Wavelet Transforms for Periodic Signals by Lifting.................. 85
3.4.1 CDF(2,2) transform.......................................... 85
3.4.2 Daub4 transform............................................. 89
3.5 Wavelet Bases for Periodic Signals.................................. 93
3.5.1 Lifting steps and polyphase matrices........................ 93
3.5.2 One-scale wavelet matrices.................................. 97
3.5.3 Trend and detail subspaces..................................101
3.5.4 Multiscale wavelet matrices.................................104
3.6 Two-Dimensional Wavelet Transforms..................................Ill
3.6.1 Images as matrices..........................................Ill
3.6.2 One-scale 2D wavelet transform..............................112
3.6.3 Multiscale 2D wavelet transform.............................116
3.6.4 Image compression using wavelet transforms..................118
3.7 Computer Explorations...............................................120
3.7.1 Haar transform..............................................120
3.7.2 CDF(2, 2) wavelet transform.................................122
3.7.3 Daub4 wavelet transform.....................................125
3.7.4 Fast multiscale Haar transform..............................127
3.7.5 Fast multiscale Daub4 transform.............................129
3.7.6 Signal processing with the multiscale Haar transform . . . 131
3.8 Exercises...........................................................135
4. Wavelet Transforms from Filter Banks 141
4.1 Overview . . . .f...................................................141
4.2 Filtering, Downsampling, and Upsampling.............................142
4.2.1 Signals and ¿-transforms....................................143
ր
Contents
4.2.2 Convolution ...............................................144
4.2.3 Linear shift-invariant filters.............................146
4.2.4 Downsampling and upsampling................................148
4.2.5 Periodic signals ..........................................150
4.2.6 Filtering and downsampling of periodic signals.............151
4.2.7 Discrete Fourier transform and ¿-transform.................152
4.3 Filter Banks and Polyphase Matrices...............................154
4.3.1 Lazy filter bank...........................................154
4.3.2 Filter banks from lifting..................................156
4.4 Filter Banks and Modulation Matrices..............................159
4.4.1 Lowpass and highpass filters...............................159
4.4.2 Filter banks from filter pairs.............................162
4.4.3 Perfect reconstruction from analysis filters...............166
4.5 Perfect Reconstruction Filter Pairs...............................168
4.5.1 Perfect reconstruction from lowpass filters................168
4.5.2 Lowpass filters and the Bezout polynomials.................169
4.5.3 CDF(p, q) filters..........................................171
4.6 Comparing Polyphase and Modulation Matrices.......................175
4.7 Lifting Step Factorization of Polyphase Matrices..................179
4.8 Biorthogonal Wavelet Bases........................................183
4.9 Orthogonal Filter Banks...........................................187
4.10 Daubechies Wavelet Transforms.....................................191
4.10.1 Power spectral response function...........................191
4.10.2 Construction of the Daub4 filters..........................192
4.10.3 Construction of the Daub2K filters.........................193
4.11 Computer Explorations.............................................194
4.11.1 Signal processing with the CDF(2,2) transform..............195
4.11.2 Two-dimensional discrete wavelet transforms................197
4.11.3 Image compression and multiscale analysis..................199
4.11.4 Fast two-dimensional wavelet transforms....................202
4.11.5 Denoising and compressing images...........................204
4.12 Exercises.........................................................205
5. Wavelet Transforms for Analog Signals , 211
5.1 Overview ....................................................... 211
5.2 Linear Transformations of Analog Signals..........................211
5.2.1 Finite-energy analog signals...............................212
5.2.2 Orthogonal projections.....................................212
5.2.3 Shift and dilation operators...............................214
5.3 Haar Wavelet Transform for Analog Signals.........................215
5.3.1 Haar scaling function......................................215
5.3.2 Haar multiresolution analysis..............................216
Contents
xii
5.3.3 Haar wavelet and wavelet transform .......................219
5.4 Scaling and Wavelet Functions from Orthogonal Filter Banks . . . 223
5.4.1 Cascade algorithm.........................................224
5.4.2 Orthogonality relations...................................225
5.5 Multiresolution Analysis of Analog Signals........................233
5.5.1 Multiresolution spaces....................................233
5.5.2 Trend and detail projections..............................235
5.5.3 Fast multiscale wavelet transform.........................239
5.5.4 Vanishing moments for wavelet functions...................241
5.5.5 Guides to wavelet theory and applications.................244
5.6 Computer Explorations.............................................245
5.6.1 Generating scaling and wavelet functions..................245
5.6.2 Using wavelet transforms to find singularities............247
5.7 Exercises.........................................................250
Appendix A Some Mathematical and Software Tools 255
A.l Complex Numbers and Roots of Polynomials .........................255
A.2 Exponential Function and Roots of Unity...........................256
A. 3 Computations in Matlab and Uvi֊Wave ..............................258
A.3.1 Introduction to Matlab....................................258
A.3.2 Uvi„Wave software.........................................260
Appendix B Solutions to Exercises 261
B. l Solutions to Exercises 1.10 261
B.2 Solutions to Exercises 2.8 .......................................265
B.3 Solutions to Exercises 3.8 .......................................268
B.4 Solutions to Exercises 4.12 272
B.5 Solutions to Exercises 5.7........................................280
Bibliography 283
Index 285
|
any_adam_object | 1 |
author | Goodman, Roe 1938- |
author_GND | (DE-588)123134943 |
author_facet | Goodman, Roe 1938- |
author_role | aut |
author_sort | Goodman, Roe 1938- |
author_variant | r g rg |
building | Verbundindex |
bvnumber | BV043530542 |
classification_rvk | SK 450 |
classification_tum | MAT 420f |
ctrlnum | (OCoLC)945685433 (DE-599)GBV845603345 |
dewey-full | 515.723 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.723 |
dewey-search | 515.723 |
dewey-sort | 3515.723 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02036nam a2200445 c 4500</leader><controlfield tag="001">BV043530542</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160610 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">160427s2016 a||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2015043388</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814725767</subfield><subfield code="c">: hardcover : alk. paper</subfield><subfield code="9">978-981-4725-76-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814725774</subfield><subfield code="c">: pbk. : alk. paper</subfield><subfield code="9">978-981-4725-77-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)945685433</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV845603345</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.723</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 420f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goodman, Roe</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123134943</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrete Fourier and wavelet transforms</subfield><subfield code="b">an introduction through linear algebra with applications to signal processing</subfield><subfield code="c">Roe W. Goodman (Rutgers University, USA)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 288 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">26 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis Seite 283-284</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aFourier transformationsvTextbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aAlgebras, LinearvTextbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aSignal processingxMathematicsvTextbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aWavelets (Mathematics)vTextbooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wavelet-Analyse</subfield><subfield code="0">(DE-588)4760859-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wavelet-Analyse</subfield><subfield code="0">(DE-588)4760859-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028946250&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028946250</subfield></datafield></record></collection> |
id | DE-604.BV043530542 |
illustrated | Illustrated |
indexdate | 2024-08-01T11:20:25Z |
institution | BVB |
isbn | 9789814725767 9789814725774 |
language | English |
lccn | 2015043388 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028946250 |
oclc_num | 945685433 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-862 DE-BY-FWS DE-92 DE-739 DE-384 DE-898 DE-BY-UBR |
owner_facet | DE-91G DE-BY-TUM DE-862 DE-BY-FWS DE-92 DE-739 DE-384 DE-898 DE-BY-UBR |
physical | xii, 288 Seiten Illustrationen, Diagramme 26 cm |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | World Scientific |
record_format | marc |
spellingShingle | Goodman, Roe 1938- Discrete Fourier and wavelet transforms an introduction through linear algebra with applications to signal processing aFourier transformationsvTextbooks aAlgebras, LinearvTextbooks aSignal processingxMathematicsvTextbooks aWavelets (Mathematics)vTextbooks Wavelet-Analyse (DE-588)4760859-6 gnd Harmonische Analyse (DE-588)4023453-8 gnd |
subject_GND | (DE-588)4760859-6 (DE-588)4023453-8 |
title | Discrete Fourier and wavelet transforms an introduction through linear algebra with applications to signal processing |
title_auth | Discrete Fourier and wavelet transforms an introduction through linear algebra with applications to signal processing |
title_exact_search | Discrete Fourier and wavelet transforms an introduction through linear algebra with applications to signal processing |
title_full | Discrete Fourier and wavelet transforms an introduction through linear algebra with applications to signal processing Roe W. Goodman (Rutgers University, USA) |
title_fullStr | Discrete Fourier and wavelet transforms an introduction through linear algebra with applications to signal processing Roe W. Goodman (Rutgers University, USA) |
title_full_unstemmed | Discrete Fourier and wavelet transforms an introduction through linear algebra with applications to signal processing Roe W. Goodman (Rutgers University, USA) |
title_short | Discrete Fourier and wavelet transforms |
title_sort | discrete fourier and wavelet transforms an introduction through linear algebra with applications to signal processing |
title_sub | an introduction through linear algebra with applications to signal processing |
topic | aFourier transformationsvTextbooks aAlgebras, LinearvTextbooks aSignal processingxMathematicsvTextbooks aWavelets (Mathematics)vTextbooks Wavelet-Analyse (DE-588)4760859-6 gnd Harmonische Analyse (DE-588)4023453-8 gnd |
topic_facet | aFourier transformationsvTextbooks aAlgebras, LinearvTextbooks aSignal processingxMathematicsvTextbooks aWavelets (Mathematics)vTextbooks Wavelet-Analyse Harmonische Analyse |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028946250&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT goodmanroe discretefourierandwavelettransformsanintroductionthroughlinearalgebrawithapplicationstosignalprocessing |
Inhaltsverzeichnis
THWS Schweinfurt Zentralbibliothek Lesesaal
Signatur: |
2000 SK 450 G653 |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |