Advanced calculus of a single variable:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2016]
|
Schlagworte: | |
Online-Zugang: | BTU01 FHR01 FRO01 TUM01 UBM01 UBT01 UBW01 UEI01 UPA01 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | 1 Online-Ressource (XII, 382 Seiten, 88 illus., 77 illus. in color) |
ISBN: | 9783319278070 |
DOI: | 10.1007/978-3-319-27807-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043504139 | ||
003 | DE-604 | ||
005 | 20220310 | ||
007 | cr|uuu---uuuuu | ||
008 | 160411s2016 |||| o||u| ||||||eng d | ||
020 | |a 9783319278070 |c Online |9 978-3-319-27807-0 | ||
024 | 7 | |a 10.1007/978-3-319-27807-0 |2 doi | |
035 | |a (ZDB-2-SMA)9783319278070 | ||
035 | |a (OCoLC)946158796 | ||
035 | |a (DE-599)BVBBV043504139 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-20 |a DE-739 |a DE-634 |a DE-898 |a DE-861 |a DE-703 |a DE-824 |a DE-83 | ||
082 | 0 | |a 515.72 |2 23 | |
084 | |a SK 400 |0 (DE-625)143237: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Geveci, Tunc |e Verfasser |0 (DE-588)1097633071 |4 aut | |
245 | 1 | 0 | |a Advanced calculus of a single variable |c Tunc Geveci |
264 | 1 | |a Cham |b Springer |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a 1 Online-Ressource (XII, 382 Seiten, 88 illus., 77 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Integral transforms | |
650 | 4 | |a Operational calculus | |
650 | 4 | |a Integral Transforms, Operational Calculus | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Infinitesimalrechnung |0 (DE-588)4072798-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Infinitesimalrechnung |0 (DE-588)4072798-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-319-27806-3 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-27807-0 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028920484&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028920484&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2016 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028920484 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-319-27807-0 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-27807-0 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-27807-0 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-27807-0 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-27807-0 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-27807-0 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-27807-0 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-27807-0 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-27807-0 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176141587578880 |
---|---|
adam_text | ADVANCED CALCULUS OF A SINGLE VARIABLE
/ GEVECI, TUNC
: 2016
TABLE OF CONTENTS / INHALTSVERZEICHNIS
PREFACE
REAL NUMBERS, SEQUENCES AND LIMITS
LIMITS AND CONTINUITY OF FUNCTIONS
THE DERIVATIVE
THE RIEMANN INTEGRAL
INFINITE SERIES
SEQUENCES AND SERIES OF FUNCTIONS. INDEX.
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
ADVANCED CALCULUS OF A SINGLE VARIABLE
/ GEVECI, TUNC
: 2016
ABSTRACT / INHALTSTEXT
THIS ADVANCED UNDERGRADUATE TEXTBOOK IS BASED ON A ONE-SEMESTER COURSE
ON SINGLE VARIABLE CALCULUS THAT THE AUTHOR HAS BEEN TEACHING AT SAN
DIEGO STATE UNIVERSITY FOR MANY YEARS. THE AIM OF THIS CLASSROOM-TESTED
BOOK IS TO DELIVER A RIGOROUS DISCUSSION OF THE CONCEPTS AND THEOREMS
THAT ARE DEALT WITH INFORMALLY IN THE FIRST TWO SEMESTERS OF A BEGINNING
CALCULUS COURSE. AS SUCH, STUDENTS ARE EXPECTED TO GAIN A DEEPER
UNDERSTANDING OF THE FUNDAMENTAL CONCEPTS OF CALCULUS, SUCH AS LIMITS
(WITH AN EMPHASIS ON Ε-Δ DEFINITIONS), CONTINUITY (INCLUDING AN
APPRECIATION OF THE DIFFERENCE BETWEEN MERE POINTWISE AND UNIFORM
CONTINUITY), THE DERIVATIVE (WITH RIGOROUS PROOFS OF VARIOUS VERSIONS OF
L’HOPITAL’S RULE) AND THE RIEMANN INTEGRAL (DISCUSSING IMPROPER
INTEGRALS IN-DEPTH, INCLUDING THE COMPARISON AND DIRICHLET TESTS).
SUCCESS IN THIS COURSE IS EXPECTED TO PREPARE STUDENTS FOR MORE ADVANCED
COURSES IN REAL AND COMPLEX ANALYSIS AND THIS BOOK WILL HELP TO
ACCOMPLISH THIS. THE FIRST SEMESTER OF ADVANCED CALCULUS CAN BE FOLLOWED
BY A RIGOROUS COURSE IN MULTIVARIABLE CALCULUS AND AN INTRODUCTORY REAL
ANALYSIS COURSE THAT TREATS THE LEBESGUE INTEGRAL AND METRIC SPACES,
WITH SPECIAL EMPHASIS ON BANACH AND HILBERT SPACES
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Geveci, Tunc |
author_GND | (DE-588)1097633071 |
author_facet | Geveci, Tunc |
author_role | aut |
author_sort | Geveci, Tunc |
author_variant | t g tg |
building | Verbundindex |
bvnumber | BV043504139 |
classification_rvk | SK 400 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9783319278070 (OCoLC)946158796 (DE-599)BVBBV043504139 |
dewey-full | 515.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.72 |
dewey-search | 515.72 |
dewey-sort | 3515.72 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-27807-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03149nmm a2200637zc 4500</leader><controlfield tag="001">BV043504139</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220310 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160411s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319278070</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-27807-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-27807-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783319278070</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)946158796</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043504139</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.72</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 400</subfield><subfield code="0">(DE-625)143237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Geveci, Tunc</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1097633071</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced calculus of a single variable</subfield><subfield code="c">Tunc Geveci</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 382 Seiten, 88 illus., 77 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operational calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms, Operational Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Infinitesimalrechnung</subfield><subfield code="0">(DE-588)4072798-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Infinitesimalrechnung</subfield><subfield code="0">(DE-588)4072798-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-319-27806-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-27807-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028920484&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028920484&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2016</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028920484</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27807-0</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27807-0</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27807-0</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27807-0</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27807-0</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27807-0</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27807-0</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27807-0</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27807-0</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043504139 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:27:28Z |
institution | BVB |
isbn | 9783319278070 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028920484 |
oclc_num | 946158796 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-20 DE-739 DE-634 DE-898 DE-BY-UBR DE-861 DE-703 DE-824 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-20 DE-739 DE-634 DE-898 DE-BY-UBR DE-861 DE-703 DE-824 DE-83 |
physical | 1 Online-Ressource (XII, 382 Seiten, 88 illus., 77 illus. in color) |
psigel | ZDB-2-SMA ZDB-2-SMA_2016 |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Springer |
record_format | marc |
spelling | Geveci, Tunc Verfasser (DE-588)1097633071 aut Advanced calculus of a single variable Tunc Geveci Cham Springer [2016] © 2016 1 Online-Ressource (XII, 382 Seiten, 88 illus., 77 illus. in color) txt rdacontent c rdamedia cr rdacarrier Mathematics Functional analysis Integral transforms Operational calculus Integral Transforms, Operational Calculus Functional Analysis Mathematik Infinitesimalrechnung (DE-588)4072798-1 gnd rswk-swf Infinitesimalrechnung (DE-588)4072798-1 s 1\p DE-604 Erscheint auch als Druckausgabe 978-3-319-27806-3 https://doi.org/10.1007/978-3-319-27807-0 Verlag URL des Erstveröffentlichers Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028920484&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028920484&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Abstract 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Geveci, Tunc Advanced calculus of a single variable Mathematics Functional analysis Integral transforms Operational calculus Integral Transforms, Operational Calculus Functional Analysis Mathematik Infinitesimalrechnung (DE-588)4072798-1 gnd |
subject_GND | (DE-588)4072798-1 |
title | Advanced calculus of a single variable |
title_auth | Advanced calculus of a single variable |
title_exact_search | Advanced calculus of a single variable |
title_full | Advanced calculus of a single variable Tunc Geveci |
title_fullStr | Advanced calculus of a single variable Tunc Geveci |
title_full_unstemmed | Advanced calculus of a single variable Tunc Geveci |
title_short | Advanced calculus of a single variable |
title_sort | advanced calculus of a single variable |
topic | Mathematics Functional analysis Integral transforms Operational calculus Integral Transforms, Operational Calculus Functional Analysis Mathematik Infinitesimalrechnung (DE-588)4072798-1 gnd |
topic_facet | Mathematics Functional analysis Integral transforms Operational calculus Integral Transforms, Operational Calculus Functional Analysis Mathematik Infinitesimalrechnung |
url | https://doi.org/10.1007/978-3-319-27807-0 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028920484&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028920484&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT gevecitunc advancedcalculusofasinglevariable |