Structure Theorems of Unit Groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2015]
|
Schriftenreihe: | De Gruyter Textbook
|
Schlagworte: | |
Online-Zugang: | FHR01 FKE01 FLA01 FHA01 UPA01 FAW01 FAB01 FCO01 Volltext |
Beschreibung: | Description based on online resource; title from PDF title page (publisher’s Web site, viewed Nov. 24, 2015) |
Beschreibung: | 1 Online-Ressource (227 Seiten) |
ISBN: | 9783110411508 |
DOI: | 10.1515/9783110411508 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043491587 | ||
003 | DE-604 | ||
005 | 20160915 | ||
007 | cr|uuu---uuuuu | ||
008 | 160404s2015 |||| o||u| ||||||eng d | ||
020 | |a 9783110411508 |9 978-3-11-041150-8 | ||
024 | 7 | |a 10.1515/9783110411508 |2 doi | |
035 | |a (ZDB-23-DGG)9783110411508 | ||
035 | |a (OCoLC)954271298 | ||
035 | |a (DE-599)BVBBV043491587 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-898 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-1043 |a DE-858 | ||
100 | 1 | |a Jespers, Eric |e Verfasser |0 (DE-588)1079149570 |4 aut | |
245 | 1 | 0 | |a Structure Theorems of Unit Groups |c Ángel del Río, Eric Jespers |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2015] | |
264 | 4 | |c © 2016 | |
300 | |a 1 Online-Ressource (227 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter Textbook | |
500 | |a Description based on online resource; title from PDF title page (publisher’s Web site, viewed Nov. 24, 2015) | ||
505 | 8 | |a This two-volume graduate textbook gives a comprehensive, state-of-the-art account of describing large subgroups of the unit group of the integral group ring of a finite group and, more generally, of the unit group of an order in a finite dimensional semisimple rational algebra. Supporting problems illustrate the results and complete some of the proofs. Volume 2 mainly is about structure theorems and geometric methods | |
650 | 4 | |a Algebra and Number Theory | |
650 | 4 | |a Gruppentheorie | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppenring |0 (DE-588)4158469-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | 1 | |a Gruppenring |0 (DE-588)4158469-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a del Río, Ángel |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110411508 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028908109 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1515/9783110411508 |l FHR01 |p ZDB-23-DMP |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110411508 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110411508 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110411508 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110411508 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110411508 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110411508 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110411508 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176120331894784 |
---|---|
any_adam_object | |
author | Jespers, Eric |
author_GND | (DE-588)1079149570 |
author_facet | Jespers, Eric |
author_role | aut |
author_sort | Jespers, Eric |
author_variant | e j ej |
building | Verbundindex |
bvnumber | BV043491587 |
collection | ZDB-23-DGG ZDB-23-DMP |
contents | This two-volume graduate textbook gives a comprehensive, state-of-the-art account of describing large subgroups of the unit group of the integral group ring of a finite group and, more generally, of the unit group of an order in a finite dimensional semisimple rational algebra. Supporting problems illustrate the results and complete some of the proofs. Volume 2 mainly is about structure theorems and geometric methods |
ctrlnum | (ZDB-23-DGG)9783110411508 (OCoLC)954271298 (DE-599)BVBBV043491587 |
doi_str_mv | 10.1515/9783110411508 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03016nmm a2200577zc 4500</leader><controlfield tag="001">BV043491587</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160915 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160404s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110411508</subfield><subfield code="9">978-3-11-041150-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110411508</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110411508</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)954271298</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043491587</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jespers, Eric</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1079149570</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure Theorems of Unit Groups</subfield><subfield code="c">Ángel del Río, Eric Jespers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (227 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter Textbook</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher’s Web site, viewed Nov. 24, 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This two-volume graduate textbook gives a comprehensive, state-of-the-art account of describing large subgroups of the unit group of the integral group ring of a finite group and, more generally, of the unit group of an order in a finite dimensional semisimple rational algebra. Supporting problems illustrate the results and complete some of the proofs. Volume 2 mainly is about structure theorems and geometric methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra and Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gruppentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppenring</subfield><subfield code="0">(DE-588)4158469-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gruppenring</subfield><subfield code="0">(DE-588)4158469-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">del Río, Ángel</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110411508</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028908109</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110411508</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DMP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110411508</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110411508</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110411508</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110411508</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110411508</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110411508</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110411508</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043491587 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:27:08Z |
institution | BVB |
isbn | 9783110411508 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028908109 |
oclc_num | 954271298 |
open_access_boolean | |
owner | DE-859 DE-860 DE-898 DE-BY-UBR DE-Aug4 DE-739 DE-1046 DE-1043 DE-858 |
owner_facet | DE-859 DE-860 DE-898 DE-BY-UBR DE-Aug4 DE-739 DE-1046 DE-1043 DE-858 |
physical | 1 Online-Ressource (227 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DMP ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter Textbook |
spelling | Jespers, Eric Verfasser (DE-588)1079149570 aut Structure Theorems of Unit Groups Ángel del Río, Eric Jespers Berlin ; Boston De Gruyter [2015] © 2016 1 Online-Ressource (227 Seiten) txt rdacontent c rdamedia cr rdacarrier De Gruyter Textbook Description based on online resource; title from PDF title page (publisher’s Web site, viewed Nov. 24, 2015) This two-volume graduate textbook gives a comprehensive, state-of-the-art account of describing large subgroups of the unit group of the integral group ring of a finite group and, more generally, of the unit group of an order in a finite dimensional semisimple rational algebra. Supporting problems illustrate the results and complete some of the proofs. Volume 2 mainly is about structure theorems and geometric methods Algebra and Number Theory Gruppentheorie Mathematics Mathematik Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Gruppenring (DE-588)4158469-7 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 s Gruppenring (DE-588)4158469-7 s 1\p DE-604 del Río, Ángel Sonstige oth https://doi.org/10.1515/9783110411508 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Jespers, Eric Structure Theorems of Unit Groups This two-volume graduate textbook gives a comprehensive, state-of-the-art account of describing large subgroups of the unit group of the integral group ring of a finite group and, more generally, of the unit group of an order in a finite dimensional semisimple rational algebra. Supporting problems illustrate the results and complete some of the proofs. Volume 2 mainly is about structure theorems and geometric methods Algebra and Number Theory Gruppentheorie Mathematics Mathematik Gruppentheorie (DE-588)4072157-7 gnd Gruppenring (DE-588)4158469-7 gnd |
subject_GND | (DE-588)4072157-7 (DE-588)4158469-7 |
title | Structure Theorems of Unit Groups |
title_auth | Structure Theorems of Unit Groups |
title_exact_search | Structure Theorems of Unit Groups |
title_full | Structure Theorems of Unit Groups Ángel del Río, Eric Jespers |
title_fullStr | Structure Theorems of Unit Groups Ángel del Río, Eric Jespers |
title_full_unstemmed | Structure Theorems of Unit Groups Ángel del Río, Eric Jespers |
title_short | Structure Theorems of Unit Groups |
title_sort | structure theorems of unit groups |
topic | Algebra and Number Theory Gruppentheorie Mathematics Mathematik Gruppentheorie (DE-588)4072157-7 gnd Gruppenring (DE-588)4158469-7 gnd |
topic_facet | Algebra and Number Theory Gruppentheorie Mathematics Mathematik Gruppenring |
url | https://doi.org/10.1515/9783110411508 |
work_keys_str_mv | AT jesperseric structuretheoremsofunitgroups AT delrioangel structuretheoremsofunitgroups |