Conducting polymers: bioinspired intelligent materials and devices
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Royal Society of Chemistry
[2016]
|
Schriftenreihe: | RSC smart materials
no. 19 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | xx, 248 Seiten Illustrationen, Diagramme (teilweise farbig) |
ISBN: | 9781782623151 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV043482237 | ||
003 | DE-604 | ||
005 | 20170208 | ||
007 | t | ||
008 | 160329s2016 a||| |||| 00||| eng d | ||
020 | |a 9781782623151 |c hbk. |9 978-1-78262-315-1 | ||
035 | |a (OCoLC)940765174 | ||
035 | |a (DE-599)BSZ462281043 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-703 | ||
082 | 0 | |a 620.19204297 |2 23 | |
084 | |a UV 9560 |0 (DE-625)146933: |2 rvk | ||
084 | |a VE 8000 |0 (DE-625)147145:253 |2 rvk | ||
084 | |a VK 8000 |0 (DE-625)147532:253 |2 rvk | ||
100 | 1 | |a Otero, Toribio Fernández |e Verfasser |0 (DE-588)1097628868 |4 aut | |
245 | 1 | 0 | |a Conducting polymers |b bioinspired intelligent materials and devices |c Toribio Fernández Otero, Technical University of Cartagena, Spain |
264 | 1 | |a Cambridge |b Royal Society of Chemistry |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a xx, 248 Seiten |b Illustrationen, Diagramme (teilweise farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a RSC smart materials |v no. 19 | |
650 | 0 | 7 | |a Kunststoff |0 (DE-588)4033676-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektrische Leitfähigkeit |0 (DE-588)4014200-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Leitfähige Polymere |0 (DE-588)4225135-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Leitfähige Polymere |0 (DE-588)4225135-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Kunststoff |0 (DE-588)4033676-1 |D s |
689 | 1 | 1 | |a Elektrische Leitfähigkeit |0 (DE-588)4014200-0 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-1-78262-374-8 |
830 | 0 | |a RSC smart materials |v no. 19 |w (DE-604)BV040628641 |9 19 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028898971&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028898971&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-028898971 |
Datensatz im Suchindex
_version_ | 1804176105875177472 |
---|---|
adam_text | Contents
Chapter 1 Life, Bioinspiration, Chemo-Biomimesis and Intelligent R
Materials 1
1.1 Introduction 1
1.2 Basic Hypotheses 1
1.3 Bioinspiration, Biomimesis, Chemo-Biomimesis,
Intelligent Materials and Systems 2
1.4 Available Reactive Materials 3
1.5 Intrinsic CPs 4
1.5.1 Available Material Families 5
1.6 Biomimetic Reactive Gels 6
References 8
Chapter 2 Electrochemical Methods 12
2.1 Introduction 12
2.2 Two Electrode Electrochemical Cells 12
2.3 Three Electrode Electrochemical Cells 15
2.4 Four Electrode Electrochemical Cells 16
2.5 Cyclic Voltammetry 17
2.5.1 Voltammetric and Coulovoltammetric
Responses 19
2.5.2 Electrolyte Potential Window 20
2.6 Square Potential Steps: Chronoamperometric,
Chronocoulometric and Reaction Kinetic
Responses 21
2.7 Galvanostatic Methodologies: Chronopotentiometric
Responses 23
RSC Smart Materials No. 19
Conducting Polymers: Bioinspired Intelligent Materials and Devices
By Toribio Fernández Otero
© Toribio Fernández Otero 2016
Published by the Royal Society of Chemistry, www.rsc.org
xiii
xiv
Contents
2.8 Electrochemical Cells and Methods Using Solid State
Electrolytes 24
References 25
Chapter 3 Electrosynthesis of Conducting Polymers 26
3.1 Introduction 26
3.2 Linear Potential Sweep: Monomer Oxidation
Potential 27
3.3 Electropolymerization by Consecutive Potential
Sweeps 27
3.3.1 Electropolymerization and Polymer
Passivation (Degradation) 30
3.4 Electropolymerization at a Constant Potential
(Potentiostatic) 31
3.5 Electropolymerization by Consecutive Square
Potential Waves 33
3.6 Electropolymerization by Flow of a Constant
Current (Galvanostatic) 34
3.7 Tafel Slope Mechanism Using Clean Metal
Electrodes 35
3.8 Electropolymerization Mechanism 35
3.9 Electrochemical and Gravimetric
Methodologies 37
3.10 Gravimetric Empirical Electropolymerization
Kinetics 38
3.11 Empirical Kinetics from the
Electropolymerization Charge 40
3.12 Electrochemical Polymerization Kinetics:
Tafel Slopes from Clean Metal Electrodes 41
3.13 Tafel Slopes from Polymer-Coated
Electrodes 42
3.14 Electropolymerization and the Properties of
the Electrogenerated Films 42
3.15 Analysis of the Polymerization Kinetics 44
3.16 Parallel Polymeric Degradation-Cross-Linking
During Synthesis 44
3.17 Parallel Chemical Polymerization 46
3.18 Parallel Adsorption of Macroions 47
3.19 Shift of the Molecular Interaction Forces:
Electrodissolution 48
3.20 Incorporation of Different Material
Nanoparticles 49
3.21 Polymerization Mechanism 50
3.22 General Comments 50
Contents
xv
3.23 Synthesis of New Polymeric Compounds
by Ionic Substitution 52
3.24 Electropolymerization Initiated by
Electrochemical Reduction 52
References 53
Chapter 4 Gel Membrane Electrodes: Electrochemical
Reactions 59
4.1 Introduction 59
4.1.1 Inert and Reactive Electrodes 60
4.2 Conducting Polymers as Electroactive Electrodes 60
4.3 Electrochemical Reactions 61
4.4 Some Considerations Related to Conducting
Polymer Reactions 63
4.5 Giant Non-Stoichiometry: Transfer of Consecutive
Electrons and Continuous Polymer/Ion
Composition Evolution 64
4.6 Ionic Composition Variation with Stable Physical
Integrity 66
4.7 Electrochemical Responses from Different
Methodologies 68
4.7.1 Voltammetric Responses 69
4.7.2 Coulovoltammetric Responses: Full
Electrochemical Reversibility 70
4.7.3 Chronoamperometric Responses 72
4.7.4 Chronopotentiometric Responses 73
4.8 Detecting Parallel Irreversible Reactions 73
4.8.1 Parallel Irreversible Reactions from Films
Coating Metal Electrodes 74
4.8.2 Parallel Irreversible Reactions from
Self-Supported Polymeric Electrodes 75
References 77
Chapter 5 Membrane Composition-Dependent Electrochemical
Properties 81
5.1 Introduction 81
5.2 Electronic Conductivity 81
5.3 Volume Variation 83
5.4 Color Shift 83
5.5 Charge Storage 86
5.6 Ionic Storage 87
5.7 Transversal Ionic Conductivity and Diffusivity
Tuning 87
XVI
Contents
5.8 Material Potential Shift 87
5.9 Surface Property Control 88
5.10 Ion Delivery 88
5.11 Packed Ionic-Conformational Energetic States 88
5.12 Chemo-Biomimetic Functions 89
5.13 ICM Electro-Chemo-Biomimicry 90
References 90
Chapter 6 Reaction-Driven Conformational, Allosteric
and Structural Changes 92
6.1 Introduction 92
6.2 Reversible Chain Molecular Motors 92
6.3 Oxidation/Reduction Reactions Drive
Macroscopic Structural Changes 94
6.4 Reaction-Driven Structural Components 94
6.4.1 Reaction-Driven Anion Exchanges 95
6.4.2 Reaction-Driven Cation Exchanges 97
6.5 Erasing Structural and Chemical Memories:
Steady State Responses 99
6.6 Other Electrochemical Responses Reveal
Reaction-Driven Structural Changes 100
6.7 Voltammetric Responses 100
6.8 Chronoamperometric Responses 103
6.9 Direct Visual Observation of the Oxidation-
Relaxation-Nucleation Process 105
6.10 Visual Tracing of the Giant Non-Stoichiometric
Nature of Conducting Polymers 107
6.11 Relaxation-Nucleation Starts at the
Polymer/EIectrolyte Interface 108
6.12 Chronopotentiometric Responses 110
6.13 Ion Trapping by Structural Effects 110
6.13.1 Ion Trapping During
Electropolymerization 110
6.13.2 Anion Trapping by Reduction-
Compaction During p-Dedoping 111
6.13.3 Cation Trapping by Oxidation-
Compaction During n-Dedoping or
p-Doping 111
6.13.4 Low Band-Gap Polymers Trap Anions
During p-Dedoping and Cations
During n-Dedoping 111
6.14 Analytical Evidences of the Ionic Content
in Deeply Reduced Films 113
6.15 Electronic Conductivity of Deeply Reduced
Films 114
Contents
xvii
6.16 Hydrogen Inhibition from Aqueous Solutions 115
6.17 In situ Monitoring of Reaction-Driven
Dimensional Changes 115
6.18 In situ Monitoring of Reaction-Driven
Mass Variations 116
6.19 Influence of the Charge Balancing Ion Dimensions 116
6.20 Solvent Influence 117
6.21 Other Reaction-Driven Conformational,
Allosteric and Structural Responses from
Different Artificial and Biological Materials 118
6.22 Physical-Driven Conformational Changes 118
References 119
Chapter 7 Conformational, Allosteric and Structural Chemistry:
Theoretical Description 124
7.1 Introduction 124
7.2 The ESCR Model 127
7.2.1 Conformational Relaxation-Nucleation:
Relaxation Time, Conformational Energy
and Relaxation Energy 129
7.2.2 Structure and Chemical Reactions 130
7.2.3 Structural Chemical Kinetic (SCK) Model 131
7.2.4 Structural Activation Energy 136
7.2.5 Structural Reaction Coefficient 138
7.2.6 Structural Reaction Orders 139
7.2.7 The SCK Model Includes Chemical Kinetic
Models 139
7.3 Structural Chronoamperometric Responses:
Theoretical Simulation 140
7.4 Structural Voltammetric Responses: Theoretical
Description 142
7.5 Structural Coulovoltammetric Responses:
Theoretical Description 145
7.6 Structural Chronopotentiometric Responses:
Theoretical Description 145
7.7 Final Considerations 148
References 149
Chapter 8 Electro-Chemo-Biomimetic Devices 152
8.1 Introduction 152
8.2 Artificial Muscles 153
8.2.1 Bilayer and Tri-Layer Bending Devices 155
8.2.2 Electro-Chemo-Dynamic Characterization
of Artificial Muscles 156
Contents
xvxii
8.2.3 The Driving Current Controls the Angular
Movement of the Polymeric Motor 157
8.2.4 The Consumed Charge Controls
Displacement and Relative Position 159
8.2.5 Artificial Muscles are Robust, Reproducible,
Reliable and Faradaic Polymeric Motors 160
8.2.6 Dynamic Hysteresis and Creeping Effects
Under Cycling 160
8.2.7 Artificial Muscles as a Tool to Clarify
Reaction-Driven Ionic Exchanges 162
8.2.8 Artificial Muscles as Tools to Quantify
Relative Solvent Exchanges 164
8.2.9 Osmotic and Electro-Osmotic Processes
During Actuation 166
8.3 Smart Membranes Tune Transversal Ionic Flow 168
8.4 Artificial Glands: Smart Chemical Dosage and
Smart Drug Delivery 169
8.5 Chemical Decontamination and Ionic
Concentration 171
8.6 Artificial Chemical Synapse (Man-Computer
Interface) and a New Hypothesis for Brain
Functions 172
8.7 Chemo-Ionic-Conformational Memories as
Possible Brain Memory Models 176
8.8 Smart Surfaces (Wettability and Self-Cleaning
Control) 177
8.9 Electrochromic Devices: Smart Windows,
Glasses and Mirrors 178
8.10 All-Organic Batteries and Supercapacitors 179
8.11 Sensors, Biosensors and Sensing Devices 181
8.11.1 Le Chátelier’s Principle, Chemical
Equilibrium and Sensors 181
8.11.2 Biochemical Sensors: The New
Conformational (Allosteric) Ways 182
8.11.3 Mechanical Sensors 182
8.12 Challenges 182
References 183
Chapter 9 Multi-Tool Devices Mimicking Brain-Organ
Intercommunication 192
9.1 Introduction 192
9.2 Electrochemically and Chemically Driven
Multifunctionality 192
9.3 Multi-Tool Devices 193
9.4 Otero’s Sensing Principle During Reaction 194
Contents
xix
9.5 Sensing Materials: Reactive Mechanical, Chemical,
Thermal or Electrical Sensors 195
9.5.1 Reaction-Driven Mechanical Sensors 195
9.5.2 Reaction-Driven Thermal Sensors 195
9.5.3 Reaction-Driven Chemical Sensors 197
9.5.4 Reaction-Driven Electrical Sensors 197
9.5.5 New Aspects of Three-Dimensional
Structural Reactions: Reacting Material,
Consumed Charge and Working Energetic
Conditions 198
9.6 Two Tools Working Simultaneously in One
Device: Sensing Artificial Muscles 198
9.6.1 Mechanical Sensing Muscles 200
9.6.2 Chemical Sensing Muscles 200
9.6.3 Thermal Sensing Muscles 200
9.6.4 Electrical Sensing Muscles 202
9.6.5 Tactile Artificial Muscles 202
9.7 The Multi-Tool Device: One Motor and Several
Sensors Working Simultaneously in a Physically
Uniform Device 204
9.8 Proprioception: Artificial Proprioception from
Sensing Artificial Muscles 204
9.9 Theoretical Description of Artificial
Proprioception 206
9.9.1 Potential and Consumed Energy Evolution
During Actuation: Stair Functions 209
9.10 Dual Actuator-Sensor Systems 210
9.10.1 Dual Actuator-Mechanical Sensor:
Experiments and Model 210
9.10.2 Dual Actuator-Chemical Sensor:
Experiments and Model 216
9.10.3 Dual Actuator-Thermal Sensor:
Experiments and Model 218
9.10.4 Dual Actuator-Electrical Sensor:
Experiments and Model 220
9.11 One Actuator and Several Simultaneous Sensors
in One Device 222
9.12 Other Multi-Tool Devices 222
9.13 Intelligent Electrochemical Materials for
Multi-Tool Devices 223
References 223
Chapter 10 Final Comments and Challenges 226
10.1 Introduction 226
10.2 Reactions and Structures 227
XX
Contents
10.3 Other Artificial Materials Giving Reaction-Driven
Structural Responses 229
10.3.1 Conducting Polymers Exchanging Cations
During p-Doping/p-Dedoping 229
10.3.2 Conducting Polymers Exchanging Cations
During n-Doping/n-Dedoping 230
10.3.3 Monolayers of Bipyridyl Cations 230
10.3.4 Very Large Carbon Nanotubes 230
10.4 Biological Processes and Conformational
Structures 231
10.4.1 Muscular Action in Striated Muscles 232
10.4.2 Allosteric Chemical Responses from
Enzymes 232
10.4.3 Allosteric and Cooperative Effects from
Hemoglobin and Other Proteins 234
10.4.4 Molecular and Viral Activity and
Conformational Structure: The Ebola Virus 235
10.4.5 Allosteric Effects from Nucleic Acids 236
10.4.6 Conformational Movements of Ion
Channel Proteins 236
10.5 Challenges 237
References 241
Subject Index
243
Conducting polymers are organic, conjugated materials that offer
high electrical conductivity through doping by oxidation and a wide
range of unique electromechanical and electrochromic characteristics.
These properties can be reversibly tuned through electrochemical
reactions, making this class of materials good biomimetic models and
ideal candidates for the development of novel flexible and transparent
sensing devices.
This book comprehensively summarises the current and future
applications of conducting polymers, with chapters focussing on
electrosynthesis strategies, theoretical models for composition
dependent allosteric and structural changes, composition dependent
biomimetic properties, novel biomimetic devices and future
developments of zoomorphic and anthropomorphic tools.
Written by an expert researcher working within the field, this title will
have broad appeal to materials scientists in industry and academia, from
postgraduate level upwards.
RSC Smart Materials
Series Editors: Hans-Jorg Schneider, Saarland University, Germany
Mohsen Shahinpoor, University of Maine, USA
The RSC Smart Materials series of books provides an authoritative
insight into smart materials research and their applications.
With contributions from leading experts, each book highlights the
different material systems for advanced undergraduates, postgraduates
and researchers in academia and related industries, both active and new
to the field.
Front cover image © Shutterstock
ISBN 978-1-78262-315-1
|
any_adam_object | 1 |
author | Otero, Toribio Fernández |
author_GND | (DE-588)1097628868 |
author_facet | Otero, Toribio Fernández |
author_role | aut |
author_sort | Otero, Toribio Fernández |
author_variant | t f o tf tfo |
building | Verbundindex |
bvnumber | BV043482237 |
classification_rvk | UV 9560 VE 8000 VK 8000 |
ctrlnum | (OCoLC)940765174 (DE-599)BSZ462281043 |
dewey-full | 620.19204297 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.19204297 |
dewey-search | 620.19204297 |
dewey-sort | 3620.19204297 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02260nam a2200469 cb4500</leader><controlfield tag="001">BV043482237</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170208 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">160329s2016 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781782623151</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-1-78262-315-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)940765174</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ462281043</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.19204297</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UV 9560</subfield><subfield code="0">(DE-625)146933:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 8000</subfield><subfield code="0">(DE-625)147145:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 8000</subfield><subfield code="0">(DE-625)147532:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Otero, Toribio Fernández</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1097628868</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conducting polymers</subfield><subfield code="b">bioinspired intelligent materials and devices</subfield><subfield code="c">Toribio Fernández Otero, Technical University of Cartagena, Spain</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Royal Society of Chemistry</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xx, 248 Seiten</subfield><subfield code="b">Illustrationen, Diagramme (teilweise farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">RSC smart materials</subfield><subfield code="v">no. 19</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kunststoff</subfield><subfield code="0">(DE-588)4033676-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrische Leitfähigkeit</subfield><subfield code="0">(DE-588)4014200-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Leitfähige Polymere</subfield><subfield code="0">(DE-588)4225135-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Leitfähige Polymere</subfield><subfield code="0">(DE-588)4225135-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kunststoff</subfield><subfield code="0">(DE-588)4033676-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Elektrische Leitfähigkeit</subfield><subfield code="0">(DE-588)4014200-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-1-78262-374-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">RSC smart materials</subfield><subfield code="v">no. 19</subfield><subfield code="w">(DE-604)BV040628641</subfield><subfield code="9">19</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028898971&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028898971&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028898971</subfield></datafield></record></collection> |
id | DE-604.BV043482237 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:26:54Z |
institution | BVB |
isbn | 9781782623151 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028898971 |
oclc_num | 940765174 |
open_access_boolean | |
owner | DE-11 DE-703 |
owner_facet | DE-11 DE-703 |
physical | xx, 248 Seiten Illustrationen, Diagramme (teilweise farbig) |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Royal Society of Chemistry |
record_format | marc |
series | RSC smart materials |
series2 | RSC smart materials |
spelling | Otero, Toribio Fernández Verfasser (DE-588)1097628868 aut Conducting polymers bioinspired intelligent materials and devices Toribio Fernández Otero, Technical University of Cartagena, Spain Cambridge Royal Society of Chemistry [2016] © 2016 xx, 248 Seiten Illustrationen, Diagramme (teilweise farbig) txt rdacontent n rdamedia nc rdacarrier RSC smart materials no. 19 Kunststoff (DE-588)4033676-1 gnd rswk-swf Elektrische Leitfähigkeit (DE-588)4014200-0 gnd rswk-swf Leitfähige Polymere (DE-588)4225135-7 gnd rswk-swf Leitfähige Polymere (DE-588)4225135-7 s DE-604 Kunststoff (DE-588)4033676-1 s Elektrische Leitfähigkeit (DE-588)4014200-0 s Erscheint auch als Online-Ausgabe, PDF 978-1-78262-374-8 RSC smart materials no. 19 (DE-604)BV040628641 19 Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028898971&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028898971&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Otero, Toribio Fernández Conducting polymers bioinspired intelligent materials and devices RSC smart materials Kunststoff (DE-588)4033676-1 gnd Elektrische Leitfähigkeit (DE-588)4014200-0 gnd Leitfähige Polymere (DE-588)4225135-7 gnd |
subject_GND | (DE-588)4033676-1 (DE-588)4014200-0 (DE-588)4225135-7 |
title | Conducting polymers bioinspired intelligent materials and devices |
title_auth | Conducting polymers bioinspired intelligent materials and devices |
title_exact_search | Conducting polymers bioinspired intelligent materials and devices |
title_full | Conducting polymers bioinspired intelligent materials and devices Toribio Fernández Otero, Technical University of Cartagena, Spain |
title_fullStr | Conducting polymers bioinspired intelligent materials and devices Toribio Fernández Otero, Technical University of Cartagena, Spain |
title_full_unstemmed | Conducting polymers bioinspired intelligent materials and devices Toribio Fernández Otero, Technical University of Cartagena, Spain |
title_short | Conducting polymers |
title_sort | conducting polymers bioinspired intelligent materials and devices |
title_sub | bioinspired intelligent materials and devices |
topic | Kunststoff (DE-588)4033676-1 gnd Elektrische Leitfähigkeit (DE-588)4014200-0 gnd Leitfähige Polymere (DE-588)4225135-7 gnd |
topic_facet | Kunststoff Elektrische Leitfähigkeit Leitfähige Polymere |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028898971&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028898971&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV040628641 |
work_keys_str_mv | AT oterotoribiofernandez conductingpolymersbioinspiredintelligentmaterialsanddevices |